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REVIEW

The challenges of generalizability in artificial intelligence for ADME/Tox endpoint 
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ABSTRACT
Introduction: Artificial intelligence (AI) has seen a massive resurgence in recent years with wide 
successes in computer vision, natural language processing, and games. The similar creation of robust 
and accurate AI models for ADME/Tox endpoint and activity prediction would be revolutionary to drug 
discovery pipelines. There have been numerous demonstrations of successful applications, but a key 
challenge remains: how generalizable are these predictive models?
Areas covered: The authors present a summary of current promising components of AI models in the 
context of early drug discovery where ADME/Tox endpoint and activity prediction is the main driver of 
the iterative drug design process. Following that is a review of applicability domains and dataset 
construction considerations which determine generalizability bottlenecks for AI deployment. Further 
reviewed is the role of promising learning frameworks – multitask, transfer, and meta learning – which 
leverage auxiliary data to overcome issues of generalizability.
Expert opinion: The authors conclude that the most promising direction toward integrating reliable 
and informative AI models into the drug discovery pipeline is a conjunction of learned feature 
representations, deep learning, and novel learning frameworks. Such a solution would address the 
sparse and incomplete datasets that are available for key endpoints related to drug discovery.
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1. Introduction

Artificial intelligence (AI) techniques and deep learning (DL) 
techniques in particular have delivered incredible results in 
domains as diverse as computer vision [1], natural language 
processing [2], and Go [3]. To clarify terms: AI is an umbrella 
term for all reasoning computers; machine learning (ML) is 
a subset of AI where models are constructed from experience 
and data; DL [4,5] is a subset of ML, where models are con
structed of complex webs of artificial neurons, which are 
nodes performing simple computations.

AI’s broad success has prompted much hope that it could 
be useful for drug discovery and repurposing [6–9], and fund
ing for its application is expected to reach 20 billion dollars by 
2024 [10,11]. Indeed, recent landmark case studies have 
demonstrated the effectiveness of AI approaches in this 
domain. These include the discovery of novel antibiotics [12] 
and AlphaFold2’s successful prediction of protein structure 
from sequences [13], where they reached a score of almost 
90 on the Global Distance Test, roughly equivalent to experi
mental accuracy [13], further improving on their first AI-based 
model [14]. Although large AI models have been traditionally 
cost and resource prohibitive to train, innovations in computer 
technologies have been breaking those barriers.

One of the key areas in drug discovery benefitting from AI 
is ADME/Tox endpoint and activities prediction where AI mod
els are used as quantitative structure–activity relationship 

(QSAR) models for the prediction of a variety of properties, 
ranging from more straightforward physicochemical predic
tions to the more complex pharmacokinetic, pharmacokinetic, 
and toxicological properties [6,15–18]. Important pharmacoki
netic (PK) endpoints include clearance, permeability, and sta
bility; important pharmacodynamic (PD) endpoint include 
drug-target specificity and selectivity; important toxicological 
endpoints include cytochrome P450 induction and hERG 
inhibition.

The availability of predictive models as part of the design 
cycle is extremely valuable as it can allow for chemists and 
biologists to effectively triage molecules and select a drug 
candidate with the highest likelihood of success in the clinic. 
These in silico tools can be time and cost saving and decrease 
the expense and high attrition of introducing new medicines 
to the patient [9].

Many studies have been undertaken to evaluate the new 
emerging AI models against traditional machine learning and 
cheminformatics models. In the first of these endeavors, 
Merck hosted a Kaggle competition [19], challenging contest
ants to build models for 15 different and diverse QSAR data
sets. The winning entry used an ensemble of methods with 
the primary predictor being a deep neural network (DNN). 
Analyzing these results in 2015, Ma et al. [20] found that the 
simple application of DNNs routinely outperformed random 
forests (RFs). In the analysis of another of these endeavors 
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2018, Mayr et al. [21] undertook a detailed comparison of 
machine learning (ML) models for drug target prediction 
using the ChEMBL database [22], similarly finding that DNNs 
outperform RFs, as well as support vector machines (SVMs), 
K-nearest-neighbors (KNN), Naïve Bayes (NB) and a similarity 
ensemble approach (SEA).

However, the aforementioned AI models have struggled to 
make meaningful predictions beyond compounds with mole
cular representations that are highly similar to their data 
[23,24]. In a recent study, Su et al. [25] evaluated the perfor
mance of ML algorithms for protein–ligand interaction scoring. 
They found that the scoring power gains of their best algo
rithm, RFs, were heavily dependent on the similarity of the 
train and test set. Similarly, Liu et al. [26] found that for ADME/ 
Tox endpoint prediction of in vivo acute chemical toxicity and 
for the aforementioned Merck Kaggle datasets, the perfor
mance of AI algorithms–DNNs, RFs, and variable nearest 
neighbors (v-NN)–was highly dependent on the similarity 
between the training set and the test set.

This limitation means that AI models will not be able to 
make accurate predictions for the novel compounds that we 
want it to elucidate. Indeed, the coming challenge lies in 
improving the ability of AI to generalize from very little data 
to a broader chemical space. The development of such a class 
of models will make the large-scale application of AI practical 
and will be revolutionary, reducing drug candidate attrition 
rates and research costs [7,10,16,27,28].

To some degree, this is an inherent, intractable problem; 
after all, AI models can only make predictions based on the 
available data [29]. And, drug discovery data is both highly 
sparse – with few experimental data points in the vast chemi
cal space of possibilities–and often noisy – depending on 
assay accuracy and sensitivity [30]. But this challenge is not 
unsurmountable. For example, in a study on 13,000 com
pounds against a 159-assay kinase panel with only experimen
tal data for 5% of possible values, researchers used data 

imputation to accurately fill in the remaining 95% of 
values [31].

This is a problem also present in the broader AI field, where 
there exists suites of tools and case studies of successful 
modeling of data scarce environment [32–34], which will be 
discussed in more detail later. So, there is still great potential 
for the development of AI models for property prediction, and 
indeed there has been a rapid growth in novel model archi
tectures proposed and case study applications.

2. Model architecture

The state of AI molecular property prediction is quickly evol
ving with an explosion in the number of new models and 
permutations thereof. Despite the variety in new models, each 
one has the same two-part structure: (1) a molecular repre
sentation which encodes a compound in a computer-readable 
format and (2) an AI algorithm which makes a prediction 
based on a molecular representation. These choices are the 
defining factor in how accurate and how generalizable an AI 
model is.

Before proceeding, it should be noted that in the current 
state of the field it is tricky to draw broad conclusions from 
narrow studies. Molecular representations and AI algorithms 
work better or worse depending on the characteristics of the 
dataset they are trained and evaluated on, and subtle differ
ences in architectures and parameter setups can make a world 
of difference.

2.1. Molecular representation

There is a broad range of molecular representations [35] to 
choose from which are summarized in Table 1.

Article highlights

● Harnessing computational power to make predictions based on data, 
AI is an effective technique and has proven itself in other domains 
and is poised to do the same to drug discovery.

● AI models that make robust in silico predictions for activities and 
ADME/Tox endpoints can help make the drug candidate selection 
more efficient and cost effective, delivering safe and efficacious 
medicines for the patient.

● The main challenge to creating accurate and applicable AI models is 
that the available experimental data is heterogenous, noisy, and 
sparse, so appropriate data curation and data collection is of the 
utmost importance.

● Ultimately, the ability of AI models to become more generalizable to 
novel situations is the only solution to keep up with the fast-paced 
and dynamic nature of drug discovery.

● The most promising, generalizable AI models utilize deep learning on 
learned feature representations, integrated under learning frame
works which allow models to aggregate information from similar 
but distinct ADME/Tox endpoint and activity prediction tasks.

This box summarizes key points contained in the article.

Table 1. The most commonly used and promising molecular representations for 
small molecules.

Molecular representation 
name Description

Molecular descriptors A vector of numbers which encode certain 
computed or experimental physicochemical, 
structural, topological, and/or electronic 
properties. The most 
commonly used and validated class of 
molecular descriptors are 2D descriptors 
[36].

Fingerprints A specific, complex type of molecular 
descriptor which encodes a compound in its 
structural and functional patterns, typically 
as a binary string where each bit represents 
the presence or absence of some pattern. 
Commonly used fingerprints include 
structural keys [37] and circular fingerprints 
[38].

Molecular graph A mathematical graph where vertices are 
atoms and edges are bonds or distances 
between atoms. Typically, additional 
features such as bond type, atom 
hybridization, or charge are used to describe 
the vertices and edges.

Graph-theoretical Matrix A matrix which encodes the molecular graph.
Simplified Molecular Line 

Entry System (SMILES)
A string of characters linearly representing the 

molecular graph of a compound encoding 
atom and bond information.
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In the early history of QSAR modeling, molecular descrip
tors were hand-tailored to specific reaction frameworks of very 
small datasets. If a researcher knows that a particular endpoint 
depends on one particular descriptor, then they can just use 
that descriptor; for example, Fieser et al. [39] could directly 
graph the relationship between antimalarial potency of 
naphthoquinones and ether-water distribution coefficients. 
However, in most cases, these relationships are more subtle, 
encompassing a combination of factors. So as researchers 
began to work with larger and more diverse datasets, the 
need for general-purpose descriptors, which model all poten
tial sources of variation, became apparent [40] and through 
the years many classes of descriptors have been developed 
and tested. A complete survey of thousands of varying mole
cular descriptors can be found in a listing by Todeschini and 
Consonni [41].

First, descriptors should be carefully chosen and pruned to 
avoid overfitting, which is where a model memorizes spurious 
correlations in the data which have no actual predictive value. 
This step is often done automatically, but it must be done very 
carefully in order to avoid leaking data and thus invalidating 
the results of a model built using the chosen data. The 
Topliss–Costello rule-of-thumb recommends that for regres
sion, the ratio between training examples and descriptors 
should be no less than 5 to 1 [42].

Second, descriptors should be as parametrically diverse as 
necessary. Different sets of descriptors cover different seg
ments of physicochemical space and some more so than 
others [43]. Thus, it must be insured that a set of descriptors 
models all relevant interactions for some property, and that 
the descriptors are able to extend and generalize outside of 
the narrow training set provided. For example, in virtual 
screening, a model with diverse descriptors will generate 
more useful and diverse hit lists [44].

Third, descriptors should be as orthogonal as possible 
to each other in the descriptor space. This allows for 
greater interpretability of the model and also avoids incor
porating redundant and distracting information into 
a model [45].

The difficulty in choosing the right descriptors lies in large 
part in the conflict between the first and second point. 
Especially when predicting on small datasets with unknown 
or ill-defined data frameworks, it is hard to find a reasonable 
set of descriptors (to avoid overfitting) while still encompass
ing all the requisite information for the model to make an 
accurate prediction. The broader point is that in this scheme – 
choosing and some set of molecular descriptors – researchers 
are required to decide which quantities are relevant and which 
are not. The model’s predictive power hinges on that, but it is 
a difficult task.

The problem of selecting the right molecular descriptors 
is a feature engineering problem. Recent models attempt to 
overcome the feature selection property by directly learning 
a feature representation from the compound’s structure, 
which is typically represented as a molecular graph, a graph- 
theoretical matrix, or as a SMILES [46]. Using learned features 
instead of engineered features has been a fundamental 
theme in the recent rise of artificial intelligence. For exam
ple, in computer vision the grand breakthrough was 

ImageNet, using DL and numerous convolutional layers 
instead of hand-engineered features such as edge detection 
or ridge detection [1]. Similarly, in Go with DeepMind’s 
AlphaGo, the AI did not use any preprogrammed move 
sequences [3].

Nevertheless, the learned featured representation approach 
still faces difficulties. A key limitation is that a model needs 
a lot of data to be able to learn its own features without 
overfitting. Ponzoni et al. [47] found that on blood–brain 
barrier (BBB), and human intestinal absorption datasets on 
the order of 100 compounds each, their best feature selection 
and feature learning models performed roughly equivalently. 
In a study of many diverse and often small prediction tasks on 
ChEMBL, Mayr et al. [21] found that models operating on 
precomputed descriptors performed better than models oper
ating directly on molecular graphs. However, in follow-up 
studies by Yang et al. [48] and Wu et al. [49], they described 
new methods of feature learning directly on molecular graphs 
and achieved results better than had been originally reported 
by Mayr et al. [21]. Another key limitation is that a purely 
learned features molecular representation does not include 
useful experimental information that may have been collected 
already. For example, when modeling cellular inhibition, 
a purely learned feature representation wouldn’t include 
important available experimental protein-ligand activity data. 
These are just a few illustrative examples of learned feature 
representations, and there is a great more variety in model 
architectures which will be surveyed later in conjunction with 
a discussion of AI algorithms.

2.2. AI Algorithms

The application of AI to ADME/Tox and activity prediction is 
rapidly evolving with new models being proposed at a fast 
rate. An overview is provided in Table 2.

Similar to molecular representations, AI algorithms can be 
broadly classified as using engineered features or learned 
features. SVMs, kNNs, RFs, linear regression, and MLP models 
fall into the former category; CNNs, RNNs, and MPNNs, and 
transformers fall into the latter category. The division is not 
completely clear cut; however, many learned features models 
do also incorporate molecular descriptors as their inputs.

Out of the feature engineered models, MLP has been 
shown to at least match and even frequently outperform 
SVMs, kNNs, RFs, and linear regression models on datasets as 
diverse as solubility, cell growth inhibition, logD, and CLINT 
[20,50–52]. While both the Ma et al. [20] and Korotcov et al. 
[50] studies agreed that MLPs outperformed all other models, 
Korotcov et al. found that DNNs performed worse on the hERG 
endpoint, while Ma et al. found that DNNs performed mark
edly better. Although their model architectures are slightly 
different, those differences will only provide modest gains, 
not significant changes in performance. Indeed, the substan
tial difference is that Korotcov et al. used approximately 500 
compounds in their training set while Ma et al. used approxi
mately 50,000 compounds. This reflects an overarching theme 
in AI: a feature-learning model performs much better than 
a feature-engineered model on large, complex datasets [53].
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A large class of learned features models are message pas
sing neural networks (MPNNs) which directly operate on mole
cular graphs. This framework was first formalized by Gilmer 
et al. [54] and was an extension of other prior successful 
studies such as gated graph neural networks [55] and deep 
tensor neural networks [56]. In large-scale follow-up studies, 
MPNNs were shown to broadly outperform SVMs, RFs, kNNs, 
Linear Regression, and MLP, but there are certain situations 
where using MPNNs is not advantageous [49]. In particular, 
Yang et al. [48] concluded that they underperform in three 
situations: when other models incorporate 3D information, 
when the dataset is small, and when the classes are imbal
anced. Indeed, it was that MPNN, which led finally to the 
discovery of a novel antibiotic [12].

Another class of learned features model uses sequential 
data as its molecular representation. Most commonly the 
molecular representation is SMILES and the AI algorithms are 
either CNNs, RNNs, or Transformers. It should be noted that 
these AI Algorithms can be used and often are used in con
junction with other molecular representations. Chakravarti 
et al. [57] found success using LSTMs (a type of RNN) on 
SMILES in modeling Ames mutagenicity, inhibition of 
P. falciparum Dd2 and inhibition of Hepatitis C Virus. They 
found that the RNN-based approach performed better in gen
eralizing to dissimilar test set compounds versus fragment- 
based models [57]. Lusci et al. [58] found success in flattening 
molecular graphs into sequential data and then using an 
ensemble of RNNs to predict aqueous solubility, achieving 
state-of-the-art results [58].

Transformers [59], which have been especially successful in 
the domain of natural language processing with OpenAI’s 
GPT-3 [2], are now being applied toward ADME/Tox endpoint 
and activity prediction as well. Particularly intriguing is the fact 
that GPT-3 worked as a few-shot model, which is where an AI 
algorithm only needs to see a few examples before it can 
make quality predictions – ideal for improving generalizability 
for endpoint and activity prediction. Furthermore, the fact that 
SMILES is encoded as text data prompted the natural applica
tion of SMILES to endpoint and activity prediction [60]. In 
recent studies, Schwaller et al. [61] found that their transfor
mer-based model outperformed all other methods in predict
ing the products of organic synthesis and Nayak et al. [62] 
found that their transformer-based model performed better 
than MPNNs for ADME/Tox endpoint prediction.

These AI algorithms often are developed under transfer 
learning, multitask learning, and meta learning frameworks, 
which have been shown to greatly increase a model’s predic
tive power. These frameworks will be surveyed together in 
a later section after a discussion on data quality and applic
ability domains, which provide a lens for investigating those 
frameworks.

3. Data quality and applicability domain

3.1. Applicability domains

The applicability domain (AD) of a model is defined as the 
response and descriptor space in which the model can be 
legitimately applied to make a prediction [63]. The domain 
of applicability is an especially relevant concern as the drug 
discovery space is expanding beyond small molecules to 
address the more challenging and novel target space with 
new modalities [64–66]. The concept of an AD was extended 
by Hanser et al. [67] to the decision domain (DD) of a model 
shown in Figure 1 which is a hierarchy defining the space 
where a model can confidently make predictions in three 
stages: (1) applicability, (2) reliability, and (3) decidability. 
Applicability measures whether or not the prediction the 
model is being asked to make is its intended use case. 
Reliability measures whether or not the model has been 
given enough information in its training set to make an 
informed prediction. Decidability measures how practically 
useful a decision; for example, a final 50–50 prediction is not 

Table 2. The most commonly used and promising AI algorithms.

AI algorithm name Description

Support vector machines 
(SVMs)

Classifies data into categories by first mapping it 
into a higher-dimensional space (to have 
nonlinearity) and then finding a hyperplane to 
separate the data into categories.

k-Nearest neighbors 
(kNNs)

Performs classification or regression for a new 
compound using the property values of the 
k most similar compounds to it

Decision trees (DTs) A decision tree is where each node of the tree is 
a yes or no test, leading to a final prediction 
of the leaf nodes. Both random forests (RFs) 
and gradient boosting methods (GBMs) 
aggregate the prediction of multiple decision 
trees, with RFs creating DTs in parallel and 
GBMs iteratively creates DTs to supplant each 
other’s weaknesses.

Linear regression Models the relationship between explanatory 
variables and the response with a linear 
equation, found from the data. There are 
many extensions of linear regression. If using 
multiple explanatory variables, this is called 
Multiple Linear Regression. If combined with 
principal component analysis, it is called 
partial least squares regression. A logistic 
function can be applied to the output of linear 
regression for binary classification tasks. An 
L2-norm penalty and the kernel trick can be 
applied to make it possible to model 
nonlinear functions.

Multilayer perceptron 
(MLP)

This is a multilayered, feed-forward, deep neural 
network, most commonly with stacks of fully 
connected layers. MLPs are a type of deep 
neural network (DNN), and most of the studies 
on DNNs have been done specifically on MLPs.

Convolutional neural 
networks (CNNs)

CNNs are like DNNs but they apply the same 
function repeatedly to subcomponents of the 
data. This has the advantage of imposing 
regularization and imposing shift invariance.

Recurrent neural networks 
(RNNs)

RNNs process a sequence of items as input (i.e. 
a SMILES string of character) which are then 
used to predict the value. Common RNNs 
include Gated Recurrent Units and Long 
Short-Term Memory.

Message passing neural 
networks (MPNNs)

A MPNN is a network framework formalized by 
Gilmer et al. [54], where a neural network is 
fed a molecular graph as input and processes 
the graph by first continually updating the 
hidden state of each atom with its neighbors 
and then finally reading out a prediction using 
another model.

Transformers A DL network architecture built on Self-Attention 
layers [59], which process sequential data (i.e. 
SMILES) very well.
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very useful, and neither would an uncertain prediction with 
high error bars. Importantly, all three stages must hold for 
a model to be able to be confidently used to make decisions. 
Although not explicitly stated, most AD methods fall into this 
framework, providing a useful mental model for analyzing 
model generalizability.

Applicability depends on both the data available and the 
molecular representation. Quantitatively, a range of molecu
lar descriptors where the model is applicable can be defined 
by using a convex hull or a range box on the descriptor 
space [68]. However, qualitative methods to assess applic
ability are just as important. Important considerations are 
included but are not limited to the following as a complete 
characterization of applicability can only be done in coordi
nation with domain experts: the query compound must be 
in the same chemical class as the available data; and the 
desired predicted endpoint must be the same as the data’s, 
i.e. even for the target, IC50 cannot be predicted solely 
with percent inhibition data.

Reliability also depends on both the data and the choice of 
molecular representation. For a given query compound, this is 
found by comparing its molecular representation with that of 
the data, seeing if there are similar compounds which would 
be the supporting information for the model to make 
a reliable prediction [69]. This is also termed ‘novelty detec
tion’, as in that novel, unseen compounds will have unreliable 
predictions. A study by Carrió et al. found that good measures 
of this are the distance between the query compound and the 
centroid of the training set, and the distance between the 
query compound and the most similar compound in the 
training set [70].

Decidability depends on the complete AI model and its 
prediction. While reliability assessed the quality of the sup
porting information, decidability assesses the quality of the 
model for the specific query compound. Many models have 
natural metrics for decidability: with an ensemble of multi
ple models, we can examine the amount of agreement or 
disagreement within the ensemble and with many classifi
cation models there is either a class probability outputted 
or an internal regression model which can be interpreted as 
a model’s decidability for a query compound [71]. If 
a model does not have such natural metrics, Carrió et al. 
gives the following criteria for decidability: distance 
between the predicted property value and the closest prop
erty value in the training set; and the standard deviation 
error of the predictions of the top 5% most similar com
pounds in the training set [70]. There are further uncertainty 
quantification models, where another model is used to 
assess the decidability of the primary model [18]. This 
could be another AI model [72] or a statistical model in 
the case of conformal prediction [73]. The specific choice of 
a decidability metric varies depending on the underlying 
model and data.

The task of increasing a model’s generalizability is to 
increase its applicability domain. Thus, a model’s generaliz
ability is limited by its three components: data, molecular 
representation, and the AI algorithm.

3.2. Data quality

For practical model-building, the data component is the fun
damental limitation, because computation has become 
widely, and cheaply available so even large and complex AI 
algorithms and molecular representations can be easily 
tested and implemented. However, the reality of the drug 
discovery process complicates the data sets that are gener
ated. Every experimental datapoint has to be measured by 
biologists and chemists which requires time and resources. 
Given the nature of early drug discovery projects, data are 
generated for smaller subsets of molecules – in the range of 
hundreds to a couple of thousands – which may be limited to 
target-specific chemotypes. In addition, assay conditions and 
read-outs change over time for specific endpoints. 
Furthermore, there are more data available for high- 
throughput primary assay endpoints and less data for the 
more resource-intensive PK/PD and tox endpoints that are 
more important in the later stages of drug candidate 
selection.

Data availability in drug discovery can be contrasted with 
other domains where AI has been successfully applied: in 
computer vision ImageNet has 1.2 million data points for 
image recognition; and in natural language processing for 
GPT3, researchers used 500 billion tokens of text data. This 
quantity of data is nowhere near available for any single end
point, and only when considering the entirety of all bioactiv
ities in PubChem do we get a comparable approximate of 
270 million bioactivities [74]. Although data augmentation 
[75] – whereby the original dataset is enhanced by creating 
additional samples for the model to learn, for example, by 
sampling different SMILES [76] or different conformations for 
the same compound [77] – is a powerful technique, it does not 
change the fact there are still only experimental data for 
a limited set of compounds, whereby other unique chemistries 
may not be represented.

There are more specific considerations as well which 
impact generalizability. Datasets can be noisy with large 
error bars or biased toward certain structures or endpoint 
values [40]. Noisy datasets are an issue because noise 
decreases the reliability of each of the datapoints, which 
decreases the reliability of the model as a whole. The model 
cannot be more accurate than the experimental data it was 
trained on. So, with any assay data source, the robustness and 
the reliability of the assay must be carefully assessed in tan
dem with domain experts to determine how it can be used in 
model-building.

Systematic biases in assay design also effect generalizabil
ity. For example, in fluorescent assays, compounds can inter
fere with the readouts by either emitting (autofluorescence) or 
absorbing the appropriate wavelength of light (quenching), 
leading to systematic biases in the data and thus 
a systematically biased model, where auto-fluorescent and 
quenching compounds would not be in its applicability 
domain [78]. Furthermore, the inaccurate data points decrease 
the reliability of the model, because the model may find non- 
biologically relevant patterns from the inaccurate data. There 
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are strategies to mitigate these effects, including using 
another distinct AI model to find and isolate the inaccurate 
data points, but the broader point is that these concerns are 
complex and require a nuanced understanding of the under
lying system.

Drug discovery data also has inherent biases related to the 
iterative design process. There is a compound series bias [79], 
where for any given endpoint the data available will all be 
built off of the same few series, simply because those hap
pened to be the ideas a team was exploring. Thus, for novel 
compounds, which are the ones we are interested in, the 
model’s prediction may be unreliable. There is also a cascade 
bias, where only compounds which make it past the first 
screen of assays are assessed in the second screen. Thus, 
a model which is trained only on data from the second screen 
may be unreliable when it comes to compounds that would 
not make it past the first screen.

Another key issue is a range bias, where the desired output 
property is often out of the range of the experimental data. 
For example, suppose we are training a model on inhibition 
against a certain target without structure data and we are 
looking for highly potent compounds, but we have not 
found any such compounds yet. The AI model’s prediction 
would not be reliable because it has not seen any examples 
of highly potent compounds it could use to make a prediction.

3.3. Dataset construction

In recent years, there has been a large increase in the volume 
of drug discovery-related data both in industry and the public 
domain [80]. Published data sets are stored in databases such 
as PubChem [74], ChEMBL [81], and ZINC [82] and are available 
for general use. Pharmaceutical companies have their own 
internal proprietary databases which are rich in compound 
diversity and data sets. There has been an important effort 
to pool these proprietary databases together, retaining the 
information value while obscuring the underlying proprietary 
compounds, in order to leverage the sum of knowledge to 
create larger, more comprehensive databases to build more 
accurate models [83–86]. The largest of these initiatives is 
MELLODDY, a consortium including 10 pharmaceutical part
ners, which uses federated learning (FL) to train an AI model 
using decentralized proprietary data.

However, more often than not this data is heterogenous, such 
that a model cannot be straightforwardly applied [30,87]. 
Instead, data must be carefully curated to create a dataset for 
model development. In the curation process, great care must be 
taken to ensure that data come from the same assay with the 
same parameters and if aggregating data, domain experts must 
be engaged to ensure that the assays are functionally the same. 
Furthermore, the data normalization procedures must be applied 
uniformly to the entire dataset. If the available data consists of 
multiple assays measuring the same fundamental information in 
different ways (i.e. scale or units), the data may be used to create 
a classification model instead of regression model.

After data curation is performed, the selection of data 
splits – creating train, test, and validation datasets – is also 
crucial toward producing generalizable models [88]. If the 

dataset is split improperly, the quality of the model cannot 
be appropriately judged using the test set, such that the 
model cannot be deployed with high confidence [89]. This 
impacts the decidability of a model. Sheridan [79] recom
mends creating data splits using the timestamps of when 
each data point is collected, finding that using a random- 
selection for data was overly optimistic in predicting the prac
tical accuracy of AI models, while using a leave-class-out selec
tion was overly pessimistic. In a practical evaluation and 
deployment of AI model, data splits are crucial as 
a misperception of the accuracy model can lead to a team 
either being misled down a wrong direction or underutilizing 
the value of the model.

4. Learning frameworks

To overcome many of these data issues, transfer learning 
(Section 4.1), multitask learning (Section 4.2), and meta learning 
(Section 4.3) frameworks have been explored. Figure 2 presents 
a graphical description of the aforementioned frameworks 
which are further defined in the body of the article in their 
respective sections. Each of these frameworks is built on and 
requires the veracity of the hypothesis that molecular property 
prediction tasks are all similar to each other, so by giving an AI 
model extra information about other tasks can make it better at 
some given tasks. The extra information makes the model quite 
reliable. One fundamental reason this is true is that all molecular 
property prediction tasks are rooted in some physical, chemical, 
biological system, so if an AI model which uses information from 
other tasks to learn physics, biology and chemistry, it will do 
better on any given task.

4.1. Transfer learning

With transfer learning, a model generalizes knowledge from 
one task to another to increase its applicability and decidabil
ity. This approach has already been used to an extent in the 
practice of tweaking global endpoint models to create local 
models, and the recent trends have been in working toward 
incorporating data beyond that. The two most common trans
fer learning approaches are feature-based, where one model 
learns some molecular representation which is then used in 
other models, and parameter-based, where one model is 
trained on its task and then its weights are used as an approx
imate solution and fine-tuned to create a model on a different 
task [90–92].

Using a feature-based transfer learning, Abbasi et al. [93] 
demonstrated that appropriately transferring features learned 
from one dataset to another dataset improves the model’s 
performance. They found that the more related the tasks 
were, the greater the benefit. For example, knowledge of 
ToxCast data improved Tox21 model performance more than 
it did SIDER performance, and while both Tox21 and ToxCast 
describe the toxicity of compounds, SIDER describes drug 
disorders. ToxCast expands the applicability and reliability of 
predictions more on Tox21 then on SIDER because the infor
mation it gives is more similar and more directly useful. Wang 
et al. [94] also used featured-based transfer learning, with 
a Transformer model giving the learned feature 
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Figure 1. The three-staged decision domain hierarchy and their limiting generalizing factor.

Figure 2. The figure presents graphical depiction of the following: (a) transfer learning models – described in Section 4.1 – where in step 1, a general AI model is 
trained on a large collection of data, and where in step 2, the general AI model is refined for use on a specific task; (b) multitask learning models – described in 
Section 4.2 – where an AI model is trained to predict multiple different properties or endpoints at the same time; and (c) meta learning models – described in 
Section 4.3 – where a second-order AI model is trained such that for a given task it outputs model specifications for that task, and then a model with those 
specifications is trained on the task.
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representation, and achieved better results than using circular 
fingerprints on predicting protein inhibition.

Li et al. found that by using a parameter-based transfer 
learning approach, they could improve the performance of 
a baseline model on predicting Log P, solvation energy, HIV 
replication inhibition, and blood-brain barrier penetration [95]. 
Their model was an adaptation of the ULMFiT, a natural lan
guage processing algorithm, indicating the universality of 
transfer learning approaches.

4.2. Multitask learning

Multitask learning is where a single AI model predicts for one 
compound many different properties at the same time [96]. 
The core concept behind this framework is that the AI model 
will share information across each of the properties it is pre
dicting. In terms of applicability domains, suppose we have 
some compound which we want to predict some property for, 
and that compound has no similar compounds with experi
mental data. If we were training a single-task model it would 
be out of the AD. But with multitask learning, the hypothesis is 
that there may be experimental data for similar compounds 
on different properties, whose information the AI model can 
use to make an informed prediction.

In 2018, Mayr et al. showed that using multitask learning 
with an MLP on molecular descriptors to predict the drug 
target activity of 1,310 assays from ChEMBL resulted in 
a model that not only outperformed all other methods (includ
ing SVMs and RFs) but also in limited circumstances reached 
near experimental accuracy [21]. In a recent 2020 study, 
Feinberg et al. [97,98] found that multitask learning with an 
MPNN on a molecular performance worked significantly better 
on a diverse set of ADME-T prediction tasks versus both 
a single-task variant as well as an RF baseline model, and 
similar simplified versions have been successfully used in 
industry [99].

4.3. Meta learning

In the meta-learning framework, a second-order model is 
created where the second-order model takes in the data for 
the task and then outputs the specifications for another AI 
model which is then trained on the task [100]. The specifica
tions may be the type of model, hyperparameters to use, or 
weight initializations. This technique helps because certain 
models do better on certain tasks – as we have seen already 
on larger datasets, deep learning models work better, but on 
smaller datasets traditional techniques such as SVMs work 
better.

In a 2018 study, Olier et al. showed that their Meta-QSAR 
model outperformed a random forest model by 13% on 
a subset of ChEMBL for drug target activity prediction [101]. 
In another approach, Nguyen et al. used a meta-learning 
model to create weight-initializations for a given task which 
were then trained on. They validated their approach on the 
same ChEMBL dataset as Mayr et al. with the large caveat that 
they used only tasks with at least 128 data points [21] and 
found that in that case, the meta-learning model outper
formed multitask models [102].

5. Conclusion

AI generated in silico predictive models for key ADME/Tox 
endpoints and activities are of high value to the early drug 
discovery process as they will expedite the selection of safer 
and more efficacious drugs for the clinic, which will ultimately 
improve patient lives at a reduced economic cost. One key 
challenge that remains is the availability of data and the 
generalizability of the models that depend on the data.

Data must be carefully evaluated for bias or noise and 
then uniformly and carefully processed in order to construct 
robust datasets. After constructing the datasets, models 
must be developed to best generalize from the data and 
make appropriate predictions. Each model consists of 
a molecular representation input into an AI algorithm 
trained on a learning framework. Although currently the 
choice of which components to use to create the model 
has no clear answer, the general trend is toward a learned 
features representation and a deep learning model, which 
are integrated under some meta learning, transfer learning, 
or multitask learning framework.

6. Expert opinion

The field of AI is making an impact across many industries. 
There is no doubt that AI will also have an impact in the 
discovery of new medicines. One main area where AI predic
tive models can be particularly effective is in the early drug 
discovery phase where clinical candidates are nominated. The 
ability to apply AI to expedite and reduce the cost in the 
discovery of new medicines to help improve patient lives is 
priceless. To this end, many companies are working on lever
aging proprietary data as well as publicly available datasets 
generated for ADME/Tox endpoints retrospectively. We pro
pose that there should also be more of a commitment in both 
academics and industry to the prospective generation data. 
This may be viewed as challenging and costly; after all, it may 
be unrealistic to standardize primary endpoint assays within 
a global company let alone in different companies and it 
would be resource prohibiting to run primary endpoint assays 
on every compound that is registered in a company database. 
However, this commitment to collecting data is an essential 
component to develop robust and reliable AI-driven predictive 
tools. If both academic institutions and drug discovery com
panies commit to sharing data in a thoughtful manner, then 
there will be significant value added for generating predictive 
models by combining data and removing siloes. But the pro
prietary nature of compounds is always a concern in industry. 
To deidentify shared compounds, shared datasets can be 
reduced to a database of features and related descriptors. 
However, in reality, collecting and sharing data is still an 
aspirational goal for drug discovery in both academia and 
industry and will be challenging to achieve. Furthermore, 
even with large datasets, we still want AI models to be as 
efficient as possible in extracting information and making 
predictions.

The ultimate solution lies in the ability of AI models to 
become more generalizable. This becomes an even more 
important consideration as the drug discovery space is 
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moving beyond small molecules to new modalities as 
therapeutics, where AI must in fact extrapolate to the 
broader drug space. The ability of AI to generalize has 
been proven in domains such as computer vision, natural 
language processing, and games. And with the recent 
success of AlphaFold2 in protein structure prediction 
from sequences, it is clear that AI is able to understand 
and make accurate calculations at the biochemical level. 
Thus, as ADME/Tox endpoint and activity prediction study 
similar fundamental systems, we can expect that AI mod
els will be similarly successful. Indeed, many recent studies 
have demonstrated the success of models in predicting 
diverse endpoints such as blood-brain barrier penetration 
and drug-target activity. However, although the potential 
benefits are clearly evident, the rapid pace of develop
ment and volume of studies means that the practical 
choice of model and dataset designed is often unclear 
for the practical industry practitioner. What is clear, how
ever, is that AI models will become larger with more 
learnable parameters and learned feature representation, 
and the AI model of the future will be able to learn basic 
biological, chemical, and physical principles from large 
datasets and apply that knowledge to accurately predict 
some ADME/Tox endpoint or activity, even if there is low 
experimental data availability for that specific task. 
However, given the historical evidence of AI in other 
domains, the best AI model 5 years from now has likely 
not been discovered yet. To get there however, research
ers must undertake systematic studies with a careful eye 
toward the nuances of drug discovery data.

That future is bright. Ideally, just as project teams use experi
mental data generated from in vitro and in vivo assays to assess 
the quality of drug candidates, in silico model predictions will 
also be incorporated as first-pass triage of compounds. Given the 
rise in computational resources, AI models can be used almost as 
ultra-efficient high-throughput screens, allowing teams to both 
increase the quantity of compounds they consider, and the 
quality of compounds going to experiment. However, experi
mental data will always be critical to providing the ground- 
truth data and guiding the development of such models.
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