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Abstract

Elicitation in combinatorial auctions is challenging as bidder preferences may be inherently difficult
to describe and consequently communicate to an auctioneer. Classical work in elicitation focuses on
using query-based techniques inspired by proper learning—often via proxies that interface between
bidders and an auction mechanism—to incrementally learn bidder preferences as needed to com-
pute efficient allocations. Although such elicitation mechanisms enjoy theoretical query efficiency,
the amount of communication required may still be too cognitively taxing for bidders in practical
scenarios.

Significant recent advancements in natural language processing, particularly Large Language
Models (LLMs), suggest the use of natural language for eliciting preferences. In this thesis, we pro-
pose an efficient LLM-based proxy design for eliciting preferences from bidders in a combinato-
rial auction setting where communication is limited. Our proposed mechanism combines LLM
pipelines and DNF-proper-learning techniques to quickly approximate preferences with limited
communication. To validate our LLM-based approach to proxy design, we create a testing sandbox
for evaluating elicitation mechanisms that make use of natural language as a means of communica-
tion.

Additionally, we address the scalability of our approach by demonstrating how we can ensure
complexity that is polynomial in the number of items, in both simulating bidder responses and the
inference process of the proxy. By leveraging sparse preference representations and restricting infer-
ence to smaller bundle sizes, our simulation remains faithful to the ground-truth preferences and
our proxy sustains high efficiency for the auction, respectively, while ensuring polynomial complex-
ity.

Reaching approximately efficient outcomes five times faster than classical proper-learning-based
elicitation mechanisms, our LLM-based approach demonstrates the potential of natural-language-
based elicitation approaches. Moreover, the LLM-based proxies provide outcomes that converge,
with sufficient communication, to those arising fromDNF-proper-learning techniques.

iii



Contents

1 Introduction 1
1.1 Combinatorial auctions (CAs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Large language models (LLMs) to process natural language . . . . . . . . . . . . 7
1.3 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Framework - Theory 17
2.1 Brief survey of CA designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Bidding Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Competitive Equilibrium Combinatorial Auction (CECA) . . . . . . . . . . . . 27
2.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Framework - Simulation 36
3.1 Making LLM calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Bidders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Constrained scenarios 49
4.1 Benchmark creation (Β1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Pure-LLM proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Hybrid XOR-LLM proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Scaling-up scenarios 58
5.1 Benchmark creation (Β2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Removing exponential complexity on the simulation end . . . . . . . . . . . . . 60
5.3 Removing exponential complexity on the inference end . . . . . . . . . . . . . . 65

6 Conclusion 67

iv



Appendix A Example LLMoutputs 72
A.1 Example Seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2 Example Bundle-Valuation Subroutine Call . . . . . . . . . . . . . . . . . . . . 77

References 83

v



List of Figures

2.1 Diagram of the relevant components. There are three categories of actors: people, prox-
ies, and the auction. Each of the actors are completely distinct from each other and
can only communicate via messaging by callingM. The proxies mediate the commu-
nication between the people and the auction. Proxies communicate with people by
messaging them with value queriesMP

V, demand queriesMP
D, and natural language

questionsMP
N. Auctions communicate with proxies by messaging them with mes-

sages of type j by callingMp′
j where the specific message type(s) depend on the auc-

tion design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Comparison between GPT-based and Gemini-based models in bidder robustness tests.
GPT-4o-mini and Gemini-1.5-flash give similar values in response to value queries ev-
idenced by the dots, each of which representing a single bundle, falling near the iden-
tity GPT-4o-mini value ($) = Gemini-1.5-flash value line ($). . . . . . . . . . . . 46

3.2 Preference variability and shape across repeated value queries to a single person. Each
boxplot displays the distribution of values for a single bundle (n = 10). Bundle 6,
in green, has all 6 items. Bundle 12, in orange, has no items. Bundle i ≤ 6 has items
T1, . . . ,Ti. Bundle 6 < i ≤ 12 has items Ti, . . . ,T6. . . . . . . . . . . . . . . . 48

4.1 Average percent efficiency of the auction run under the three scenarios with three peo-
ple participating in each. Anchoring on our XOR elicitation proxy, we see that the drop-
in proxy ωVD,1 using an LLM performs similarly, both reaching 75% efficiency in around
10 interactions between person and proxy. The plus-questions proxy ωVD,2 performs
markedly better, reaching 75% efficiency in four interactions that otherwise would take
ten interactions. We see that the proxy ωNVD, which is also allowed to use natural lan-
guage questions, reaches the same 75% efficiency in two interactions. . . . . . . . 54

vi



4.2 Performance of the hybrid XOR-LLM proxy ωH (in red) and the XOR elicitation proxy
ωXOR ( in teal) under varying numbers of interactions with the person they represent.
Panel (a) shows that ωH gets to a good approximation of the person’s valuation signif-
icantly quicker than ωXOR while still converging to the person’s exact valuation. Panel
(b) shows that when running the auction with ωH, similar to Figure 4.1 we get a sharp
increase in efficiency in the initial stages, while still converging on the welfare-maximizing
outcome in the long run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Percent difference in auction efficiency between using the dense-preferences simulated
person and a sparse-preferences simulated person. We run the auction with the dense
or sparse preferences simulated person and then evaluate the auction efficiency using
the ground-truth simulated person. We see that there is no significant difference be-
tween the dense and the sparse preferences simulated person under the TRANSPORTA-
TION and the PRESERVES scenario. . . . . . . . . . . . . . . . . . . . . . . . 64

vii



Acknowledgments

Thank you, David, for your guidance and generosity. Thank you, Francisco, for your boundless
support, kindness, and advice. Thank you, Edwin, for your insight and collaboration. To myMom
and Dad andWaverly, thank you for getting me to who I am. To Iris and Abigail, thank you for your
love, strength, and patience, always.

viii



1
Introduction

Auctions are mechanisms for the sale of items to the highest bidder, with the overall goal of ensuring

that items are received by those who value them the most. Historically, auctions have been utilized

to sell a wide array of goods, from art pieces to public resources.

I require that [my things of art] shall all be dispersed under the hammer of an auc-

tioneer, so that the pleasure which the acquiring of each one of them has given me

shall be given again, in each case, to some inheritor of my own tastes.
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—Will of Edmond de Goncourt, 189630

An allocation in an auction refers to an assignment of items to bidders. Edmond de Goncourt

wanted to allocate the items of his estate such that they reached “some inheritor of [his] own tastes.”

An auction facilitates the sale of items to recipients who value the items highly and who are willing

to outbid everyone else. The value a person assigns to items is the worth they perceive in those items,

and the payment is the amount they pay the auctioneer for their allocated items.

The utility a person derives from items they win is calculated as their value of the items minus the

payment made. Bidders aim to achieve positive utility, where the value exceeds the payment, thereby

maximizing their satisfaction. Conversely, negative utility implies that the payment outweighs the

value, which bidders seek to avoid. Zero utility means that a bidder is indifferent towards winning

the items.

Auctions are not limited to estate sales or bankruptcies; they play a crucial role in allocating and

pricing public goods. This concept dates back to Eric Lindahl in 1919,42 who discussed the alloca-

tion of public services through a financial process which is akin to auctions and taxes which are akin

to payments in an auction.

We have shown that, provided the taxpayers are all in an equal position to defend

their economic interests when tax laws are passed, the financial process would result

in each individual having to pay a tax amount corresponding to his valuation of pub-

lic services.

— Positive Lösung by Eric Lindahl, 191942

Lindahl did not precisely describe the mechanism, which he calls a ”financial process”, that

would converge on this outcome. In modern applications, such as the Federal Communications

Commission’s (FCC) 2019 spectrum auctions, combinatorial auctions (CAs) have proven highly

effective for efficiently allocating items. In 2019, the FCC successfully raised two billion dollars by
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auctioning licenses in a combinatorial format, where bidders can place bids on bundles of items

rather than on only individual items43. The FCC chose to use CAs because CAs reach more effi-

cient allocations. An allocation ismore efficient than another if the social welfare of the first alloca-

tion is higher than the social welfare of the second allocation. The social welfare or the total value of

an allocation is the sum of the values that each bidder assigns to their allocated bundles. The goal is

to reach a social-welfare-maximizing outcome, where no other allocation yields a higher social wel-

fare.

1.1 Combinatorial auctions (CAs)

Combinatorial auctions (CAs) are a type of auction designed to address the inefficiencies of tradi-

tional auction mechanisms, which often fail to achieve efficient outcomes in certain scenarios47.

CAs mitigate these shortcomings7 but introduce significant challenges in terms of cognitive and

computational burdens on bidders45. We will explore how CA designs incorporate proxies10 to

assist bidders in formulating their preferences and strategically placing bids based on those prefer-

ences, which are traditionally communicated through queries in specialized languages. CAs have

been successfully employed across many domains, from spectrum sales3 to procurement24 and be-

yond39.

1.1.1 Motivating example

We start with an example that motivates why a CA achieves more efficient allocations.

When we have an auction of a single item, the bidder with the highest value for that item will

offer the highest bid because they are willing to pay the most. In auctions with multiple items, how-

ever, the bidders with the highest values might not always win because of the exposure problem7.

A situation where this happens is when someone values a bundle of items highly but has low
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value for each item individually. For example, in an estate sale, a bidder might want to buy a match-

ing pair of nightstands but not either nightstand individually. A bidder in this situation would not

be willing to bid much on each individual item because of the risk of having to pay for that item

when they are unable to acquire the rest of the items in the bundle. Therefore, the auctioneer who

auctions off each of the items individually would not realize the efficient outcome that the auction-

eer who sells the bundle of items together for a higher value can achieve.

A general diagnosis of the exposure problem is that bidders might have combinatorial preferences,

where bidders have preferences over bundles of items instead of separable preferences, where bidders

have preferences over individual items, considering each item independently of the others. When

bidders are unable to express their combinatorial preferences, inefficiencies can occur because auc-

tioneers cannot take those preferences into account. Combinatorial auctions (CAs) are auctions that

are, at their essence, designed to give bidders the ability to express their combinatorial preferences by

bidding on bundles of items instead of individual items.

1.1.2 Exponential complexity in CAs

The essential fact about CAs—working with combinatorial preferences—also raises an essential

challenge for the practical implementations of CAs9. GivenN items for auction, a person with

combinatorial preferences has 2N possible bundles to express preferences over. This is exponentially

more possibilities than a person with separable preferences who has onlyN possible individual items

to express preferences over. This exponential complexity raises two practical considerations:

1. How can people intelligently formulate their preferences?

2. How can people efficiently calculate their best responses during a CA?

To address these practical considerations, CA designs often introduce proxies to represent a per-

son in an auction10. To set up our discussion of proxies in CAs, we will first introduce bids and
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related concepts in Section 1.1.3. We will then introduce in Section 1.1.4 the queries traditionally

used for communication between proxies and the person they represent before discussing the role of

proxies in CAs in Section 1.1.5.

1.1.3 Bids

A bidder formulates their preferences in terms of a bid.

Bids submitted to an auction may sometimes strategically differ from a bidder’s preferences to

gain an advantage, e.g. in certain situations, one might want to pretend like one doesn’t want an

item in order to get it at a lower price.

When a bid does not differ from a bidder’s preferences, the bid is truthful, so a bidder’s valua-

tion function—a function which maps bundles of items to the value a person has for them—can be

described in terms of their truthful bid.

A bid also has a correspondence to prices. The prices during an auction can be described as the

bid one would have had to make where the seller would be indifferent to selling to them any given

item or bundle of items.

1.1.4 Queries

Queries are issued by proxies to request that the bidder respond with a certain piece of informa-

tion about their preferences. There are many different query types, and we will focus specifically

on three. These three queries will be used in our construction of the testing sandbox and of prox-

ies. The three queries also provide a representative picture of the currently studied communication

channels between a bidder and their proxy.

Value queries The proxy asks the bidder what value they would place on a specific bundle.
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Demand queries The proxy asks the bidder whether they are happy with their allocated bundle

at given prices, and if not, an example of a bundle they would like to switch to instead.

Equivalence queries The proxy asks the bidder whether or not the proxy’s hypothesis of

the bidder’s valuation is correct, and if not, an example of a bundle which the hypothesis valuation

values incorrectly.

In the context of computational learning theory, value queries may also be calledmembership

queries. Given the ability to make membership and equivalence queries, learning algorithms from

computational learning theory23 can learn specific classes of preferences26. Learning algorithms are

different from preference elicitation algorithms in that the former learns the complete preferences

of a person while the latter only elicits the parts of the preferences that are necessary for representing

the person in the auction and determining the final allocation.

1.1.5 Role of proxies in CAs

Proxies facilitate the interactions between the auction and the bidder in a way that helps the bidder

be more efficient and effective43. Different proxy designs implement the facilitation of interactions

differently. Proxies can help bidders by calculating the bidder’s best responses given their prefer-

ences and implementing strategic bidding behavior on their behalf41. Proxies can also help bidders

formulate their preferences via a process called preference elicitation6.* The classical proxy has the

property of only requiring a number of interactions with the person they represent with complexity

polynomial in the number of atomic bundles. This demonstrates an avenue of attacking the expo-

nential complexity of CAs. Therefore, in this work, we will focus on comparing our LLM-based

*Preference elicitation is often described as being performed by the auctioneer instead of explicitly by a
proxy. We explicitly call out preference elicitation as being done by a proxy who then forwards to the auc-
tioneer the elicited preferences in order to consider modifications of preference elicitation algorithms as
modifications of a proxy instead of as modifications of the underlying auction mechanism.
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proxies to classical proxies, which perform preference elicitation using methods based on learning

algorithms. A formal description of a classical proxy will be given in Chapter 2.

However, currently, even with the use of proxies (whether classical or otherwise), participating in

CAs can still be prohibitively expensive, because even a moderate number of interactions still takes a

long time for bidders to respond to because of non-trivial response times11,33. This means that it is

fairly expensive for bidders to participate in CAs because of the substantial time and effort required

to formulate preferences and strategically bid.

1.2 Large language models (LLMs) to process natural language

Recent leaps in natural language processing using large language models (LLMs)—where LLMs can

pass the bar exam22, medal in the International Mathematics Olympiad15, and fluently communi-

cate in eight languages31—suggest that we should consider the benefits of using natural language in

the communication and understanding of preferences.

1.2.1 Strengths of LLMs

Reasoning capability LLMs, evidenced by their ability to solve complex mathematical prob-

lems19,49, are strong at reasoning over numbers and mathematical objects. This suggests the ability

of LLMs to understand relatively complex pricing and valuation schemes.

Base of knowledge Being trained on an enormously large amount of data,† LLMs have the

knowledge that allows them to ace a wide swath of standardized tests37. LLMs have demonstrated

a command of these concepts and are able to understand their expression in natural language. This

†The exact data used for LLMs is not known for proprietary LLMs and is not known even for top LLMs
with open-source weights and code. We do know that they are trained from 800 GB14 to 15,000 GB 31 with
data from sources like Wikipedia, textbooks, research articles, and forum posts.
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provides some intuition that LLMs will have the facility to make decisions based on natural lan-

guage descriptions of items and preferences.

Generalizing to social sciences tasks Studies have shown the ability of LLMs to func-

tion as models of cognitive behavior4 and to exhibit similar intuitions as humans18. Specifically

in economic tasks, LLM-based agents have been able to function fairly strategically and similar to

humans20,5. These studies will be discussed in depth when discussing related works in Section 1.4.

1.2.2 Weaknesses of LLMs

Hallucinations LLMs have been shown to hallucinate and generate non-factual responses.

Encouraging evidence shows that hallucination can be mitigated with techniques like prompt engi-

neering21.

Context length LLMs have a limited context length, meaning that one can only communi-

cate to the LLM a capped amount of text. Engineering has been done to vastly increase the cap32,

but this still means that for large numbers of items we are restricted in the number of bundles we

can communicate prices or valuations for.

Context length constraints highlight the role of bounded rationality theories48 even when using

LLMs and computational methods, and the importance of communication complexity considera-

tions36.

Costly calls LLM calls have a much higher associated cost versus traditional computations,

because billions of arithmetic operations are required to compute the output of an LLM as LLMs

are at a minimum size consisting of billions of parameters31. Reducing the amount of LLM calls
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and thus reducing the computational cost will be a continued theme in our design of simulations

and of proxies.

1.3 Summary of contributions

We consider LLMs as a technology to improve the efficiency of allocating items in a combinatorial

auction by using LLMs to improve proxies that represent simulated people in a combinatorial auc-

tion. LLMs enable computer systems to make decisions based on natural language, suggesting that

LLM-based proxies can understand preferences expressed in natural language. Thus, we develop

LLM-based proxy designs to utilize these strengths of LLMs to improve a proxy’s ability to elicit

the person’s preferences, in the sense of reducing the amount of communication required from the

person and the cognitive burden required to produce that communication.

To evaluate these LLM-based proxy designs, we develop a testing sandbox, which allows us to

simulate runs of combinatorial auctions, each with varying setups of items for auction and partic-

ipating simulated persons. We use a pipeline of LLM calls to create a simulated person with coher-

ent, combinatorial preferences who can respond to natural language questions about their prefer-

ences, in addition to responding to value and demand queries. This is done by generating a seed,

a natural language description, to characterize the simulated person’s preferences. We run checks

on the generated seeds to show that they give reasonable, robust, and precise responses to value

queries by examining the shape and distribution of valuations given by responses to the queries.

This method of generating seeds and the preferences they characterize is of broader interest because

these seeds define a class of preferences that can be readily expressed in natural language. However,

further investigations beyond the checks we run, including human comparisons, are left to future

works and discussed further in the concluding chapter.

Having implemented the simulated persons in the testing sandbox, we next incorporate LLMs
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into proxy designs to reduce the number of interactions between a person and their proxy, while

maintaining efficient outcomes. Using nine toy setups—each setup has a population of three sim-

ulated people under one of three unique scenarios we design with six items each—in our testing

sandbox, we measure the social welfare of the allocation resulting from simulating an auction with

LLM-based proxies representing the simulated persons. We compare our LLM-based proxies to clas-

sical proxies on the basis of the social welfare of the resulting allocation and the amount of commu-

nication between the LLM-based proxies and the people they represent, measured by the number of

interactions between them. We demonstrate that compared to classical proxies—which already only

require a number of interactions with the person they represent with polynomial complexity in the

number of items—LLM-based proxies even more quickly reach approximately efficient outcomes,

using five times fewer interactions. That is, when using an LLM-proxy, we reach 75% efficiency of

the auction in two interactions between a proxy and the person they represent, while, when using a

classical proxy, it takes ten interactions between a proxy and the person they represent. ‡

LLM-based proxies achieve this level of performance through three features: competently using

value and demand queries, asking questions in natural language, and inferring preferences that are

not explicitly stated. Together, these features mean that the LLM-based proxies can communicate

more effectively with the person they represent and submit bids that are comprehensive without

requiring the person to explicitly spell out every single preference.

Having shown the ability of LLM-based proxies to quickly learn preferences and achieve ap-

proximately efficient outcomes in just a few interactions, we further develop a hybrid LLM-based

proxy which incorporates key algorithms from classical proxies. We demonstrate that by merging

the classical and LLM designs, in the long run, we can ensure that these hybrid LLM-based proxies

converge to the same social welfare value as classical proxies.

‡The efficiency of an auction is calculated as the social welfare of the allocation of the auction divided
by the maximum social welfare of any possible allocation, given ground-truth valuations. This calculation is
described in detail in Chapter 2.
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Given how costly it is to use LLMs, our implementations must also be efficient in the number

of LLM calls made in service of both running the simulated persons and the LLM-based proxies.

We show that we can apply strategies to restrict the number of LLM calls made and still sustain

high efficiency for the auction. This is a crucial step in demonstrating we can scale up both the sim-

ulation and the proxy from handling our toy setup to handling large numbers of items. Using a

strategy to restrict the number of LLM calls made in the construction of the simulated person to

be polynomial in the number of items, we approximate the simulated person’s preferences with a

representation that is on average 25% of the original size. We show that we can restrict the number

of LLM calls as such without any statistically significant impact on the validity of the simulated

person—where we measure validity as the lack of change in the efficiency of the auction after using

the approximation—in two of the three scenarios, and only a 5.6% decrease in efficiency in the third

scenario. Using a strategy to restrict the number of LLM calls made by the LLM-based proxies to be

polynomial in the number of items, we reduce the maximum number of inferences the LLM-based

proxies makes to 23% of the original maximum. We show that this restriction has no statistically

significant impact on the performance of the LLM-based proxies.

The limitation of our empirical studies in demonstrating that there is little performance hit to

using the polynomial-complexity restricted strategy is that we only demonstrate the validity and re-

sults of the strategy on a limited set of items. This point will be discussed further in the concluding

chapter.

The work presented here indicates the potential for using LLMs as proxies in combinatorial auc-

tions. More broadly, the techniques presented in this work provide further evidence of the possi-

bility of using LLMs for economic simulations and as economic agents. We might imagine a world

where people and organizations all have AI proxies who represent them—where their proxies bid

and negotiate on their behalf under economic mechanisms.
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1.4 Relatedwork

Related to our use of LLMs to simulate people participating in combinatorial auctions, there have

been impressive studies demonstrating the ability of LLMs to mimic human-like responses. These

studies will be highlighted in Section 1.4.1.

Though not on settings specific to combinatorial auctions, other studies describe LLMs as com-

ponents of economic systems. These exciting studies, which we will describe in Section 1.4.2, imag-

ine new roles for LLMs as actors in the economy and examine possible impacts. Similarly, in describ-

ing LLM-based proxies for participation in combinatorial auctions, we are imagining a new type of

economic actor enabled by the unique strengths of LLMs.

1.4.1 LLMs to mimic human-like responses

LLMs have proven competent in simulating human responses to queries in many different applica-

tions. Horton 20 showed that LLM-pipelines can incorporate specified social preferences and polit-

ical views in behavioral economics tasks, and give appropriate human-like responses. Park et al. 40

conducted 2-hour interviews with a thousand different people and then had each person complete

the General Social Survey, the Big-Five Inventory, and participate in various games and tasks. They

showed that an LLM-pipeline—given only the interview transcripts—could accurately predict

corresponding human behavior over the surveys, game, and tasks. Argyle et al. 2 show that LLMs,

conditioned on socio-demographic backstories and select survey responses, can generate additional

survey responses that accurately match aggregate statistics as well as individual patterns within an

individual’s survey responses.

The breadth of results showing the ability of LLMs to simulate the response of humans to queries—

here we take queries broadly to include survey responses, action selection in games and tasks, reports

of utilities—demonstrate the general robustness of the LLMs’ competency in mimicking human re-
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sponses. These studies also give indication of techniques to get more human-like responses from

LLMs. Studies find that LLMs give more human-like responses when they are prompted with

vignettes—stories in natural language as opposed to plain numerical specifications—of a scenario5,

and when one uses the more advanced LLMs with larger parameter sizes and with additional re-

finement on response quality via a technique called reinforcement learning from human feedback

(RLHF)8.

Moreover, this ability of LLMs to simulate human response is enormously useful because we can

use LLM-simulated people as subjects of simulations. Studies have shown such simulations to yield

informative results.

Li et al. 27 showed that LLMs could be used as actors in macroeconomic simulations in a realistic

manner—in the sense that they recovered from the simulations nominal macroeconomic indicators

and regularities like the Phillips Curve and Okun’s Law.

Zhao et al. 50 showed that LLMs could be used to simulate customers and restaurant owners in a

manner that led to a ”winner’s take all phenomenon” among restaurants. They then modified vari-

ous aspects of the LLM-simulated customers to show how those factors affected the phenomenon.

Interestingly, due to the use of LLMs for the simulation, they were able to probe micro-level deci-

sions made by the simulated customers.

Manning et al. 29 showed that LLMs can be used not only as simulated people within a eco-

nomic system—systems as diverse as bargaining, hearings, hiring, and auctions—but also as an ex-

perimenter setting up the systems, endowing the simulated people with specific preferences and

attributes. They go on to show that the results of running the system with LLM-simulated people

lead to surprising results in the sense that the results would not have otherwise been predicted by an

LLM before running the systems.
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1.4.2 LLMs as components of economic systems

Work is also beginning to investigate the participation of LLMs as components of economic sys-

tems. These economic systems exhibit unique features due to their inclusion of LLMs. In our work,

we will show that LLM-based proxies decrease the burden bidders face when participating in the

combinatorial auctions. Related work focuses on many different features in many different do-

mains, though not precisely on the topic we study. We organize the related work, roughly, into the

following areas: collusion and collaboration in games, privacy in information markets, and augmen-

tation of social choice.

Collusion and collaboration in games Fish et al. 12 showed that LLMs as participants

in markets exhibited strategic behavior. They demonstrate that LLMs can collude to manipu-

late down the prices in two settings—LLMs setting prices as Bertrand oligopolists may collude to

achieve higher prices, and LLMs bidding in first-price auctions may collude to achieve lower prices.

Lin et al. 28 showed that LLMs as Cournot oligopolists in a complex multi-market setting collude to

lower production quantities.

We see from these works the strategic capabilities of LLMs and that the effect of introducing

LLMs as components of economic systems can potentially be detrimental to social welfare, in this

case, via manipulated prices. Of course, it must be noted that collusion in one domain might trans-

late to collaboration in another domain. One might imagine LLMs collaborating to stabilize energy

consumption in brownout situations, or LLMs collaborating to help workers collectively bargain

with an employer.

Privacy in information markets The use of LLMs can provide ingenious solutions to

tricky problems.

In an information market, the buyer’s inspection paradox is that the buyer needs to see the in-
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formation that is for sale in order to calculate their value for the information. The paradox is that

then, in a sense, the seller has already given the buyer the information. Rahaman et al. 46 describe a

method where an LLM proxy—given the objective of a buyer—screens the information available

for sale on behalf of the buyer by examining the content of the information, and then makes a pur-

chasing decision on behalf of the buyer. In this manner, the bidder via their LLM proxy is able to

examine and reason about their value for the information for sale without ever actually seeing the

information themselves. They demonstrate that this method leads to better information purchases

from the buyer.

Augmentation of social choice Social choice theory traditionally operates over a set of

explicitly-defined alternatives and people’s preferences over those alternatives. This raises a problem:

when we consider all possible policies in the broadest sense, the socially-optimal policy may not exist

in the set of explicitly-defined alternatives.

Fish et al. 13 showed that an LLM-based system—given human responses on a survey on their

opinions on policy—is able to propose policy statements that lead to broad consensus. They do

this by using an LLM to construct from each person’s survey responses a model of their utility of

any given policy. They then implement a system that consists of these LLMs which model utilities

and another LLMwhich generates policy statements. They demonstrate how the system can be or-

ganized to effectively query these LLMs via an algorithm—with formal guarantees given a specific

sense of fairness—in order to arrive at proposed policy statements, which they show to be empiri-

cally popular from human surveys.

The potential applicability of this kind of LLM-based system to more settings can be seen in

the work of Gudiño et al. 17 who similarly showed the ability of LLMs to model voter responses to

policy proposals in the Brazilian context. This suggests that a corresponding approach paired with a

policy proposal generator LLMwould be successful in proposing popular policy proposals.
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We see from this example the theme of using LLMs to bridge human preferences defined in natu-

ral language with formal economic systems to achieve more efficient outcomes.

1.5 Roadmap

In this work, we describe a study on using LLM proxies in combinatorial auctions to reduce the

time and effort required from bidders while maintaining auction efficiency. We evaluate the LLM

proxies using simulated combinatorial auctions. We continue with Chapter 2 where we give a pre-

sentation of theory underlying the specific setting we are working in. Chapter 3 describes the testing

sandbox the proxies are evaluated in and gives robustness checks for the sandbox. In Chapter 4, we

formulate our LLM proxies and describe their performance in our simulation sandbox compared

to our classical proxies. In Chapter 5, we describe and evaluate strategies to ensure both the simula-

tion and the LLM-based proxies have complexity that is polynomial in the number of items. We end

with concluding thoughts in Chapter 6.

16



2
Framework - Theory

This chapter describes the theory upon which we will implement the simulation framework and

develop and evaluate LLM-based proxies. We begin with a brief survey of combinatorial auctions in

Section 2.1. Section 2.2 gives our model of combinatorial auctions by describing the various compo-

nents and how they interact. Section 2.3 gives a formal treatment of the XOR language. Section 2.4

gives a formal treatment of the Competitive Equilibrium Combinatorial Auction (CECA) and the

classical proxies for it. Section 2.5 describes various metrics necessary for analyzing our simulations.
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2.1 Brief survey of CA designs

We give a presentation of three standard CA designs10,25 – the Vickrey-Clarke-Groves (VCG) auc-

tion, the Combinatorial Clock Auction (CCA)3 and the Competitive Equilibrium Combinatorial

Auction (CECA)26 – to describe the considerations for the settings where our LLM-based proxies

will act. A formal treatment of CECA, which is the specific auction mechanism that we will use for

our simulations, will be given in Chapter 2.4. Each of these three auction mechanisms10 has been

shown to lead to efficient outcomes given rational bidder behavior, though an account of rational

bidder behavior varies auction by auction.

The presentations of each CA design will focus on the communication required from the bid-

der during the auction and the difficulty for the bidder to produce such communication. Addi-

tional consideration will be given to the role of price discovery and privacy preservation, which are

of broader interest in auction design. Price discovery is where the auction incrementally converges

on prices to allow bidders to adjust to newmarket price information. Privacy preservation is where

bidders only need to reveal some sub-part of their valuation.

Vickrey-Clarke-Groves (VCG) Auction

The VCG auction is a sealed-bid auction where bidders submit their valuations for all possible bun-

dles of items. The auctioneer then allocates the items to maximize social welfare and charges each

winner the opportunity cost of their winnings, which is the difference in the total welfare of all

other bidders from the current allocation to the allocation where the current winner does not get

allocated any items and the items are instead allocated according to their next best use among other

bidders. This pricing scheme makes it a dominant strategy for bidders to report their values truth-

fully. Furthermore, using the truthful reports, the VCG auction reaches an efficient allocation of

goods.
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However, the VCGmechanism places a considerable burden on bidders. It requires them to de-

termine and report their values all at once in a specified formula for all bundles they are interested

in, without any price information to guide their valuation efforts. Additionally, privacy is compro-

mised as bidders must reveal their comprehensive valuations.

Combinatorial Clock Auction (CCA)

The Combinatorial Clock Auction (CCA)3 is an iterative auction that employs a clock phase for

price discovery, followed by a sealed-bid proxy round to promote efficiency. During the clock phase,

the auctioneer announces prices for individual items, and bidders indicate their desired quantities at

those prices. Prices for items with excess demand are incrementally increased until the market clears.

This provides valuable price information to bidders, allowing them to adjust their valuations and

bidding strategies.

The proxy round takes place after the clock phase, using the market-clearing item prices from

the clock phase as the starting point for package bidding. Bidders submit their valuations to proxy

agents, who strategically bid on their behalf to maximize their profits. The inclusion of the clock

phase reduces the burden on bidders by providing price discovery and allowing them to focus their

valuation efforts on relevant packages. The use of the proxies in the subsequent proxy round reduces

the time and cognitive demand for strategic bidding. The dominant strategy for the bidders using

the proxies is simply to state their truthful preferences.

However, CCAs still require bidders to be able to give a comprehensive, truthful valuation for

the sealed-bid proxy round.
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Competitive Equilibrium Combinatorial Auction (CECA)

The Competitive Equilibrium Combinatorial Auction (CECA)26 is an iterative auction format

designed to achieve an efficient allocation of goods by converging to competitive equilibrium (CE)

prices. In a CECA, the auctioneer announces prices over bundles of items and an allocation of items

and asks bidders if they are happy with the allocation or if they would bid more; they continue do-

ing this until every bidder indicates they are happy and thus a competitive equilibrium is reached.

Proxies help bidders determine how they should strategically respond to the auctioneer’s an-

nounced prices and allocation and update their bid. Classical designs for proxies use a learning

algorithm to decide what input from the bidder is needed to determine the relevant parts of their

valuation and to decide how to update their bid.

By using the iterative format and the proxies to aid the bidders, CECA lowers the burden placed

on bidders to participate in the auction and allows bidders to keep their valuations private until

parts of their valuation become necessary.

We will be working with CECA, because its iterative format provides further opportunities to

improve the classical proxies by preference elicitation using LLMs. As such, the CECAwill be for-

mally described in Section 2.4.

2.2 Model

In our model, we consider various auction scenarios over which auctions are run. A scenario S has

N items: T = {T1, . . . ,TN}. We have a populationP of people, where p ∈ P is a specific person

participating in the auction. A bundle b of items is a subset of T , and B is the set of all possible bun-

dles. A price function φ : B → R+ assigns a price to each bundle of items. Prices are considered to

be personalized, where person pi faces prices φi.

We assume that the objects of an auction scenario—the scenario itself, its items, bundles, prices,

20



Figure 2.1: Diagram of the relevant components. There are three categories of actors: people, proxies, and the auction.
Each of the actors are completely distinct from each other and can only communicate via messaging by callingM. The
proxies mediate the communication between the people and the auction. Proxies communicate with people by messag‐
ing them with value queriesMP

V, demand queriesMP
D, and natural language questionsMP

N. Auctions communicate

with proxies by messaging them with messages of type j by callingMp′
j where the specific message type(s) depend on

the auction design.

and people—have a natural language description given by the description functionD. For instance,

we may haveD(S) = “a farmer’s market” and three types of items,D(T1) = “apple”,D(T2) =

“banana” andD(T3) = “strawberry”. In addition, we might have a person with a description given

byD(p) = “Carlos; only likes red fruit” bidding in the auction. For expedience, we often directly

refer to an object by its description.

People in a scenario participate in the auction via a proxy. We consider a family Ω of proxy de-

signs. A person p is represented by a proxy p′ = ω(p)with ω ∈ Ω. This proxy has an internal

context, or ‘memory’, and so can refine its understanding of the person’s preferences by repeat-

edly communicating with its person. Similarly, each person has a memory of the conversations

between it and its proxy. A person communicates with its proxy by responding to natural lan-

guage questions, value queries, and demand queries made by the proxy. We writeMp
N (Natural
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Language Query) for the function that maps any natural language question to person p’s answer.

For example, we might have that for q = Do you have specific colors of fruit you like or dislike?

Mp
N(q) = Yes, I like red fruit.

Similarly,Mp
V (Value Query) maps any bundle to a (non-negative real) value that person p has

for the bundle *. Finally,Mp
D (Demand Query) takes prices φ and a bundle b as input and returns

either (1, b) if the person is happy with b at φ or (0, b′) if the person would prefer some bundle

b′ ̸= b over b at φ. After each of these questions, the question and answer form part of the person

and proxy’s memories.

When evaluating our LLM proxy designs, we simulate people by secondary LLMs pipelines (dis-

tinct from the LLM proxy). These LLMs are seeded with the descriptionD(p) of virtual people. In

this simulated setting, we assume that the functionsMp
N,M

p
V, andM

p
D are implemented by the

secondary LLM pipelines instead of by a person directly. †

Given a scenario S andK people p1, . . . , pK represented by their proxies p′i = ω(pi), for a given

proxy design ω ∈ Ω, we define an auctionA as an algorithm that takes as input S and p′1, . . . , p′K

and gives as output both an allocation b1, . . . , bK and payments ϕ1, . . . , ϕK, where the person pi is

given bundle bi and must pay the auctioneer ϕi. The auction algorithm only communicates with

proxies via messagesMp′
j where j is the type of message the auction algorithm is communicating

with.

2.3 Bidding Language

Currently implicit in our discussion of combinatorial preferences and bidding in combinatorial

auctions is how these preferences are communicated and what kind of language they are described

*The implementation of these message functions may not be deterministic.
†This can be formally captured by a context ci which contains a transcript of the first i (natural language)

communications. This is how the context is implemented in our LLM proxy design.
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in. We use the term language to encompass different kinds of formula that may be used. In this

section, we will introduce general considerations for such languages and introduce the commonly

used bidding language for combinatorial auctions, XOR.

2.3.1 Considerations for bidding languages

Bidding languages are assessed on two criteria34.

Succinctness

A bidding language’s succinctness measures how efficiently it can represent a bidder’s preferences.

High succinctness enables bidders to convey complex preferences with minimal communication,

which is valuable for reducing both time and computational demands, especially as the number

of items grows. Succinctness is considered with respect to a specific preference class and it is not

possible to succinctly express arbitrary combinatorial preference‡.

Expressiveness

A bidding language’s expressiveness reflects its capacity to capture a wide range of preferences. Two

kinds of preferences to consider are preferences where items are complements and where items are

substitutes. Items are complements when a bundle of items has a higher value than the individual

items; an extreme case of which is given in the exposure problem. Items are substitutes when a bun-

dle of items has lower value than the individual items; intuitively, this can happen when someone

‡Consider the construction of combinatorial preferences as follows. Start with a list of all 2N − 1 non-
empty bundles with valuation equal to the number of items they contain. Independently for each bundle,
add noise ε, where ε is a uniform random variable from (−0.5, 0.5), to construct a new combinatorial prefer-
ence. Because of the addition of the noise which makes it so that there is no pattern in valuations, we need to
define the valuation in terms of at minimum 2N − 1 values so this preference cannot be succinctly expressed.
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wants an item of a specific type but there are multiple varieties of that type available and they have

the same value for one item of that type as they would for multiple.

2.3.2 XOR Language

A commonly-used language, which we will use for our simulations in the subsequent chapters, is

the XOR language because it is fully expressive35—capable of expressing all possible preferences.

An XOR bid consists of atomic bundles and the bids for each of the individual atomic bundles. An

XOR bid has for any given bundle an implied bid equal to the highest bid of any atomic bundle the

given bundle contains.

We can see how XOR bids are fully expressive: we can add atomic bundles for all 2N possible

bundles, such that we can independently control the valuation for any bundle. However, note that

because expressing arbitrary preferences requires exponential complexity in the number of atomic

bundles, the XOR language is not succinct for arbitrary preferences. The exponential complexity of

the size of the XOR bid in terms of the number of items places prohibitive burdens on the bidder

and the auctioneer36. Addressing this exponential complexity is a central challenge for combinato-

rial auction design.

Formally, an XOR bid θ = (B, v) consists of a set of atomic bundles B ⊆ B and valuation

function vθ : B → R+. The empty set ∅ is always an atomic bundle in B and v(∅) = 0 because a

person can always choose to bid on nothing for free.

For any bundle b ∈ B, a bid θ induces a valuation function v∗ whose domain is all bundles

instead of just the atomic bundles. v∗ values a bundle b as the highest value of any atomic bundle

contained in b and is given by the following equation.

v∗θ (b) = max
{b′∈B|b′⊆b}

v(b′) (2.1)
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This formulation captures the idea that the value of a bundle is determined by the highest-valued

atomic bundle it contains. Recalling that a bid can represent a valuation or prices, the induced v∗

captures the notion of free disposal, i.e. that the bid, price, or valuation of a bundle does not increase

when an item in the bundle is removed. We will use φ∗
θ to refer to the prices that the induced valua-

tion v∗ of an XOR bid θ.

XOR-valuation query response

Wemodel a simulated person with an XOR valuation θ = (B, v) as responding to queries in the

following manner.

Value queries When they are issued a value query, they are asked what value they would place

on a specific bundle b. They would return in response v∗θ (b) given by Equation 2.1.

Demand queries When they are issued a demand query, they are asked whether they are happy

with their allocated bundle b at given prices φ, and if not, which bundle they would like to switch to

instead. Their response can be computed by first calculating the set of bundles B′ that have higher

utility than the allocated bundle.

B′ = {b′|v∗θ (b′)− φ(b′) > vθ(b)− φ(b); b′ ∈ B} (2.2)

If B′ is non-empty, they give, as a response to the demand query the tuple (0, b′), where b′ is a

random element from B′, because b′ has higher utility than b.§ Otherwise, they give, as a response to

the demand query, the tuple (1, b), indicating that they are happy with their allocated bundle.

§We choose a random element from B′ to match common definitions of a demand query and the related
equivalence query26,1. This can be thought of as the simulated person responding to a demand query by
giving an example of a bundle they would prefer more at given prices than the allocated bundle.
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Equivalence query When they are issued an equivalence query, they are asked whether their

valuation is equivalent to a hypothesis valuation θ̂ = (B̂, v̂). If θ̂ = θ, they return the tuple (1, ∅),

indicating that the hypothesis valuation is their valuation. If not, then they are not equivalent and

they find a counterexample bundle b′, by randomly selecting from the set where v∗
θ̂
(b′) ̸= v∗θ (b

′)

in a similar fashion to the calculation of the response to demand queries, and they return the tuple

(0, b′).

XOR preference elicitation

The XOR preference elicitation algorithmmakes queries to a person to determine their XOR pref-

erences θ = (B, v). We denote this algorithm asLxor and formulate it from Lahaie & Parkes 26 ,

who were inspired by the connection between XOR bids and monotone-DNFs identified by Blum

et al. 6 .

Lxor, described in Algorithm 1, begins with an empty hypothesis valuation v̂, containing an

empty set of atomic bundles B̂with corresponding empty mapping v̂. Lxor iteratively discovers new

atomic bundles by checking if B̂ is complete using either an equivalence query or a demand query

with θ̂ as prices and the empty bundle b0 as the allocated bundle.¶ If the response to the equivalence

or demand query indicates that the current valuation correctly represents the person’s preferences,

the algorithm concludes that all atomic bundles have been identified and terminates. Otherwise, the

algorithm invokes a subroutine, denotedLxor,step, to extract a new atomic bundle from the bundle b

that is returned as a part of the response to an equivalence or demand query.

In theLxor,step subroutine, given in Algorithm 2, the algorithm queries the bidder for the value of

¶Equivalence queries are used in the original learning algorithms from computational learning theory
that the XOR preference elicitation algorithms are based on. Demand queries can also be used as given by
Lahaie & Parkes 26 , where they show that B̂ is missing an atomic bundle b′, then the bidder would indicate in
the response to the demand query that they would desire the bundle b′ as b′ would give them positive utility
while all b ∈ Bwould give them zero utility when facing θ̂ as the prices.
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Algorithm 1 Learn XOR Preferences (Lxor(p))
1: Input: Person p
2: Initialize B← ∅, v← ∅, equivalent← False
3: while not equivalent do
4: (r, b)←Mp

D(φ∗
(B,v), b) {Obtain response and bundle from demand query}

5: if r = 1 then
6: equivalent←True
7: end if
8: if r = 0 then
9: (b′, value)←Lxor,step(p, b)) {Identify atomic bundle and its value}
10: B← B ∪ {b′}
11: v(b′)← value
12: end if
13: end while
14: return (B, v)

the bundle b usingMp
V(b) and then attempts to identify which items are essential by checking for

each item in bwhether removing it to create smaller bundle b′′ changes the valuation, i.e. whether

Mp
V(b) = Mp

V(b′′). If removing an item does not change the valuation, it implies that the item

is not essential to the bundle’s value and can be excluded from the atomic bundle. This process is

repeated for all items in the bundle to identify the minimal atomic bundle b′, which is then added to

the set B along with updating the valuation function to the queried value of b.

This iterative process continues until all atomic bundles and their corresponding valuations

are discovered, ensuring that the algorithm accurately learns the person’s XOR preferences with a

bounded number of queries.

2.4 Competitive Equilibrium Combinatorial Auction (CECA)

The competitive equilibrium combinatorial auction (CECA), described by Lahaie and Parkes26

and first introduced here in Section 2.1 is characterized by its auction algorithm denotedLCECA,
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Algorithm 2 Learn XOR Preferences Step (Lxor,step(p, b))
1: Input: Person p, Bundle b {Current bundle from demand query}
2: ν←Mp

V(b) {Obtain original bundle value}
3: b′ ← b {Initialize refined bundle}
4: for i = 1 toN do
5: if Ti ∈ b′ then
6: b′′ ← b′ \ {Ti} {Remove item i from bundle}
7: ν′ ←Mp

V(b′′) {Query new bundle value}
8: if ν′ = ν then
9: b′ ← b′′ {Item i is not essential}
10: end if
11: end if
12: end for
13: return (b′, ν) {Return identified atomic bundle and its value}

which is given in Algorithm 3. The auction algorithm progresses through iterations—repeated steps

where the auctioneer announces an allocation of items and prices, and the proxies adjust bids on

behalf of the bidders they represent. This process continues until all bidders are happy and thus in a

competitive equilibrium; that is, they indicate via their proxies that they no longer wish to change or

increase their bids.

We call the bid that the proxy ω(pi) submits at each iteration the manifest valuation θ̃i. The gen-

eral form of the CECA considers different languages for representing θ̃i, and we will consider the

specific case where θ̃i is represented in the XOR language. The problem of computing the optimal

allocation from the manifest valuation is also called the winner determination problem because in

computing the allocation of items we are determining who wins what items. We describe in Sec-

tion 2.4.1 how the auctioneer uses the manifest valuations to compute the optimal allocation of

items by using a technique called integer programming. We describe in Section 2.4.2 how the auc-

tioneer uses the manifest valuations to compute the prices that the bidders face, and the prices will

be constructed in a way that makes them Lindahl priceswhich means that a competitive equilibrium
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will be reached. We describe in Section 2.4.3 the classic design for a proxy that participates in the

competitive equilibrium combinatorial auction.

Algorithm 3 Competitive Equilibrium Combinatorial Auction (LCECA)
1: Input:
2: S : Scenario
3: p′1, p′2, . . . , p′K: Proxies for each person pi
4: Initialize:
5: Set manifest valuations θ̃1, θ̃2, . . . , θ̃K ← (∅, ∅ → 0) {Initial guess, e.g., all zeros}
6: Set counterexample_flag← False
7: while not counterexample_flag do
8: b1, . . . , bK ← allocate(S, θ̃1, θ̃2, . . . , θ̃K) {Allocate bundles to maximize social

welfare via integer programming}
9: counterexample_flag← False
10: for each proxy i = 1 toK do
11: φi(bi)← Compute maximal Lindahl prices(φ, bi) {Per Equation 2.5}
12: (r, θ′)←Mp′i

C (φi, bi) {Check if happy}
13: if r = 0 then
14: θi ← θ′
15: counterexample_flag← True {Need to reallocate}
16: end if
17: end for
18: end while
19: return {(bi, φi(bi)) | i = 1, 2, . . . ,K} {Allocated bundles and corresponding pay-

ment}

2.4.1 Winner determinationwith integer programming

Solving the winner determination problem involves finding the optimal allocation of bundles b∗ =

{b1, . . . , bK} that maximizes social welfare, given the submitted manifest valuations θ̃1, . . . , θ̃K.

Formally, this can be expressed as:

b∗ = argmax
b

K∑
i=1

v∗θ̃i(bi), (2.3)
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where v∗θ̃i(bi) denotes the induced XOR valuation function for one with XOR valuation θ̃i, and

where b∗ represents the optimal allocation of items. By choosing the allocation b∗ according to

Equation 2.3, we maximize the social welfare under truthful manifest valuation θ̃i.

We can solve for b∗ by using integer programming, which is a technique where we write a pro-

gram that consists of variables that we are optimizing the values of, a linear expression that we are

trying to maximize, and linear inequalities that are conditions that must be satisfied. Then, an in-

teger program solver is used to calculate the values of the maximizing variables. Efficient solvers are

readily available, such as the OR-TOOLS package44, which we’ll use.

We translate the winner determination problem into an integer program which is given in Equa-

tions 2.4.

The program is givenN items, {T1, . . . ,TN}, to allocate amongK people who each have XOR

valuations θi = (Bi, vi)where their valuation hasmi = |Bi| atomic bundles, Bi = {bi,1, . . . , bi,mi}.

The variables we are optimizing are xi,j ∈ {0, 1}, where if xi,j is 1, person i is allocated their atomic

bundle bi,j and if xi,j is 0, person i is not allocated that bundle (Equation 2.4d). Defined as such, xi,j

characterizes the allocation and we want to choose xi,j in a way that maximizes social welfare (Equa-

tion 2.4a). We impose two conditions on the allocation. First, as XOR valuations are defined, only

one atomic bid can be accepted per person so we write that as a condition in Equation 2.4b. Second,

each item can be allocated only once, so we write that as a condition in Equation 2.4c, where ai,j,k is

1 if item Tk is in atomic bundle bi,j in person i’s XOR valuation, and as a result, ai,j,k · xi,j is 1 if and

only if item k is allocated to person i via their atomic bundle bi,j.
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Maximize
K∑
i=1

mi∑
j=1

vi(bj) · xi,j (2.4a)

such that
mi∑
j=1

xi,j ≤ 1 ∀i ∈ {1, . . . ,K} (2.4b)

K∑
i=1

mi∑
j=1

ai,j,k · xi,j ≤ 1 ∀k ∈ {1, . . . ,N} (2.4c)

where xi,j ∈ {0, 1} ∀i ∈ 1, . . . ,K;∀j ∈ 1, . . . ,mi (2.4d)

We compute b∗ by feeding the program given by Equations 2.4 into the SCIP integer program

solver provided in the OR-TOOLS package44.

The winner determination problem is solved for the manifest valuations at the beginning of each

iteration at the auction. The winner determination problem’s solution b∗, which the auctioneer

announces as the allocation, is called the intermediate allocation for that iteration.

2.4.2 Competitive equilibriumwith Lindahl prices

Having described the computation of the optimal allocation b∗ = {b1, . . . , bK} in the previous

Section 2.4.1, in this section, we describe computation of prices φ∗ = {φ1, . . . , φK} such that the

allocation and corresponding prices has the property that neither the person or the auctioneer will

want to modify the allocation by changing which items are sold to which person. This property,

called competitive equilibrium is desired because we want the population of people participating in

the auction and the auctioneer to agree on the allocation b∗—we do not want a participant to look

at the prices and decided that they would like to switch to buying some other bundle and we do not

want the auctioneer to look at the prices and decide they would like to instead allocate items based

on some alternate allocation—because b∗ is the allocation that maximizes social-welfare and so we
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want to realize that outcome b∗.

When prices φ∗ and allocation b∗ together form a competitive equilibrium, prices φ∗ are said to

be Lindahl prices that support the allocation b∗.

We compute prices φ∗ = {φ1, . . . , φK} that support the optimal allocation b∗ with Equa-

tion 2.5, where the price of bundle b for person i is φi(b) and is given by their manifest valuation

implied value v∗θi for that bundle minus a constant di.

φi(b) = v∗θ̃i(b)− di (2.5)

We now give brief justification for the fact that neither the auctioneer nor people participating in

the auction would want to change the overall allocation b∗ or their allocated bundle bi, respectively.

For the auctioneer, we can calculate their revenue as
∑K

i=1 φ(bi) =
∑K

i=1 v∗θ̃i(bi) −
∑K

i=1 di.

We see that
∑K

i=1 di is constant and we know from the integer program given by Equations 2.4

that b∗ is the allocation that maximizes
∑K

i=1 v∗θ̃i(bi). Thus b
∗ is the allocation that maximizes the

auctioneer’s revenue, so the auctioneer will not want to choose some alternate allocation.

For the people participating, with truthful manifest valuations θ̃i, we see that each person derives

constant utility di from any bundle b as ui(b) = v∗θ̃i(b) − φi(b) = di, so they will be indifferent

towards switching to any bundle. In this chapter, in considering the properties of the CECA auc-

tion we will assume honest responses both by the proxies and by the participants of the auction in

keeping with convention with computational learning theory and prior work on CECA.When this

assumption is not possible, as will be the case in subsequent chapters with LLM-based proxies and

participants whose response are not deterministic and who may hallucinate, we focus instead on the

empirically realized social-welfare and auction efficiency.

In our implementation of the CECA auction, for simplicity, we will be usingmaximal Lindahl

prices, where di = 0. Though other valid Lindahl prices exist, we are primarily interested in under-
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standing the effect of LLM-proxies on the relationship between auction efficiency and the number

of interactions between the proxy and the person they represent. Therefore, under truthful bid-

ding, though the choice of Lindahl prices effects the relative utility between the auctioneer and the

participants, it does not affect the overall social welfare and auction efficiency.

2.4.3 Classical proxy

For the CECA auction, we have classical proxies who elicit preferences from the people they rep-

resent using algorithms inspired by computational learning theory. Specifically, when manifest

valuations are reported in the XOR bidding language, the classical proxy uses the XOR preference

elicitation algorithm given in Section 2.3.2 to decide how to elicit preferences from the person they

represent. This algorithm is inspired by monotone-DNF learning algorithms.

The XOR classical proxy, ωxor, implements for p′ = ωxor(p),M
p′
C similar to Algorithm 1,Lxor.

p′ maintains in its memory a hypothesis valuation θ̂ = (B̂, v̂), with B̂ initialized to the set contain-

ing only the empty set and v̂maps the ∅ to 0. The proxy implementsMp′
C (φi, bi) as the function

that returns the result of the following algorithm: call a demand queryMp
D(φi, bi), and depending

on the result, if the person is happy, return (1, θ̂), and if the person is not happy and prefers some

bundle b′, update the hypothesis valuation θ̂with a new atomic bundle and its corresponding valua-

tion, which is computed by running the algorithmLxor,step(p, b′), and returns the update hypothesis

valuation in the tuple, (0, θ̂).

2.5 Metrics

From the simulations, we will be primarily interested in how—for different proxy designs—the

overall auction efficiency corresponds with the number of interactions the person has with their

proxy. For robustness, we will be aggregating over multiple runs of the testing sandbox over many
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auction scenarios with different scenarios and different populations of people. In defining our met-

rics, we will also need to consider two facts: different people may have different amounts of interac-

tions with their proxy both overall and within each iteration of the auction, and value queriesMp
V

may not be deterministic.

Our metrics will be calculated from records of runs of the auction. Each sequence of recordsR

consists of a sequence of tuples rj = (nj, vj)where rj is the record for the jth iteration of the auction,

nj is the average total number of interactions between a proxy and the person they represent from

the 1st to the jth iteration of the auction, inclusive, and vj is the sum of the valuations each person

pi has for the bundle bi,j they are assigned in the intermediate allocation of the jth iteration, which is

calculated as vj =
∑

i v∗θi(bi,j). For our simulations, each person pi will have a defined ground-truth

XOR valuation θi.

2.5.1 Auction Value at Number of Interactions

For a given run of an auction with recordsR, the Auction Value at n interactions (AVn) represents

the total auction value at the iteration of the auction where the average number of interactions per

person is closest to nwithout exceeding it. Formally, we define it as follows.

Given a recordR = {r1, r2, . . . , rJ}where each rj = (nj, vj),

AVn = vj∗ (2.6)

where j∗ is the highest iteration that has an average number of interactions that is less than or

equal to n, satisfying the following.

nj∗ = max{nj | nj ≤ n,∀j ∈ {1, . . . , J}} (2.7)
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2.5.2 Auction Efficiency

The Auction Efficiency (AEn) at n interactions measures how effectively the auction converts inter-

actions into total auction value relative to the maximum possible auction value achievable in the

scenario.

Given AVn and the optimal auction value ν,

AEn =
AVn

ν
(2.8)

ν represents the maximum possible total valuation that could be achieved if the auction allocated

bundles optimally based on true valuations of all participants.

For our simulations each person pi will have a defined ground-truth XOR valuation θi. There-

fore, the social-welfare maximizing total value (ν) for a scenario S with populationP = {p1, p2, . . . , pK}

can be calculated by first solving for the social-welfare maximizing allocation by using the integer

program for solving the winner determination problem (Section 2.4.1) using the ground-truth valu-

ation {θ1, θ2, . . . , θK} and then summing the individual values each person holds for their allocated

bundle according to their ground-truth valuations.

2.5.3 Evaluating proxies

We define a benchmark Β as a set of setupswhere a setup is a tuple of scenarios and populations,

(Si,Pi). Thus, a proxy’s efficiency at n interactions, PEn, is the average auction efficiency across all

setups in the benchmark.
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3
Framework - Simulation

Here we describe the simulation sandbox and various checks performed on the sandbox to provide

support for its further use.

3.1 Making LLM calls

When we describe making a call to an LLM, the following three steps are performed:
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1. Collate the relevant information into a prompt

2. Call an LLMwith the prompt. The prompts are then passed to OpenAI’s GPT-4o-mini

model38, versioned July 18, 2024. Unless otherwise specified, all LLM calls in this work use

this model.

3. Compile the response from the output of the LLM. The responses are either extracted using

regular expressions from the LLM output or using the structured outputs feature provided

for GPT-4o-mini model38 which allows for the specification of the response format. If the

responses cannot be identified as such or the LLM otherwise encounters errors in some way,

we repeatedly call the LLMwith the same prompt until it succeeds.

3.2 Scenarios

We create three scenarios in which we test the LLM pipelines for modeling bidders and test the

LLM pipelines for acting as proxies in CECAs. We design the scenarios to be accessible so that

the reader can readily assess the realism of the interactions and so that various LLMs can be tested

without domain-specific knowledge or fine-tuning. Each scenario hasN = 6 items for auction,

where some of the items are clear substitutes for each other and others are clear complements to

each other, and many are somewhere in between. These scenarios and their items are presented in

Table 3.1.

3.3 Bidders

3.3.1 Seed generation pipeline

Recall that a seed of person p, denoted asD(p), is the natural language description that defines p’s

preferences.
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Table 3.1: Scenarios and Available Items

Scenario Items Description

S1: Electronics

1. Apple AirPods (2nd Generation)
2. Apple AirPods Max
3. Apple iPad (9th Generation)
4. Apple iPad Air (M2)
5. Apple Pencil (2nd Generation)
6. Apple Pencil Pro

A collection of like-new electronics
donated to a local library, ranging
from AirPods to iPads and accessories.

S2: Preserves

1. Organic Strawberry Jam
2. Wild Blueberry Preserves
3. Apricot and Lavender Conserve
4. Sugar-Free Raspberry Spread
5. Spiced Plum Chutney
6. Tropical Mango and Passionfruit Jam

Gourmet food items are available,
including exotic jams and chutneys
with unique flavors, perfect for
cooking or gourmet meals.

S3: Transportation

1. Electric Scooter S2 Pro (2024)
2. Electric Scooter Elettrica (2023)
3. Voltron SP03 Electric Scooter (2024)
4. Troik Verve+ 2 (2023)
5. Titan Escape 3 (2023)
6. Schwin Suburban (2021)

A variety of electric scooters and bikes
are up for auction, catering to urban
commuters and fitness enthusiasts.

The process for generating the seeds is carried out in a four-step LLM pipeline.

The first step of the pipeline generates the germ of the seed. Each subsequent step revises the seed

to be more specific and more coherent. We take the final revised preferences at the end of the fourth

step to be the true seed,D(p).

Step 1: Initial Preference Generation. The LLM generates a person’s specific purchase occasion

and taste over the items, which forms an initial description of a person’s preferences based on

the given auction scenario. To encourage diversity in responses, we ask the LLM to generate

three possible versions and then randomly sample one.

Step 2: Revision for Clarity and Consistency. The LLM revises the initial preferences to en-

hance clarity and internal consistency in describing the person’s preferences.
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Step 3: Anchor with Specific Valuations. The LLM anchors the person’s preferences by assign-

ing explicit dollar values to specific bundles of interest.

Step 4: Refinement for Precision in Complex Bundles. The LLM refines the person’s prefer-

ences to outline a process that defines how they evaluate other unspecified bundles, consider-

ing items as substitutes and complements.

3.3.2 Message response pipeline

Using the seeds for the simulated person,D(p), we create our ground-truth simulated person, which

we will use to evaluate and characterize various LLM-based proxies in Chapter 4. We model each

simulated person as having ground-truth XOR preferences θ.

To construct θ, we implement an LLM bundle-valuation subroutine that gives the value a sim-

ulated person has for a bundle. We use this to get explicit valuations v of all possible bundles B,

so that the ground-truth simulated person has dense preferences θ = (B, v) over all possible bun-

dles. Construction of the ground-truth simulated person will thus use a number of LLM calls with

complexity exponential in the number of items due to calling LLM valuation subroutine for all 2N

possible bundles.

θ is used to directly implement to respond to value queries and demand queries,Mp
V andMp

D

respectively, in accordance with the equations given in Section 2.3.2. We define an additional LLM

subroutine to respond to questions to implement the message response function for natural lan-

guage questions,Mp
N. For these three queries, the simulated person does not maintain a memory of

previous responses. They will always give consistent responses to value and demand queries asMp
D

andMp
V are deterministic given θ. Our proxy designs will only ask a maximum of one question at

the start of the auction, so memory forMp
N is not relevant.

In Chapter 5, we will remove the exponential complexity associated with the construction of
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the simulated person. Instead, we will create a simulated person with sparse preferences, i.e. prefer-

ences over a non-exponential-complexity number of bundles, that approximates the ground-truth

simulated person. Because equivalence queries will only be used in the construction of the simu-

lated person with sparse preferences, a description of the message response function to equivalence

queries will be deferred to Chapter 5.

LLM subroutines

Bundle-valuation subroutine This subroutine takes as input the description of a person’s

preferences,D(p), and the description of a bundle b,D(b), and gives the value the person has for

the bundle, by issuing a LLM call that reasons over the description of the person’s preferences and

the description of bundle’s contents, according to the following prompt.

Va lu e que r y prompt :

D e s c r i p t i o n o f s c e n a r i o : D(S)

De s c r i p t i o n o f t h e p e r s o n : D(p)

* * * * *
The p e r s o n h a s t h e op t i o n to r e c e i v e bund l e : D(b)

* * * * *
P l e a s e d e t e rm i n e t h e v a l u e t h e p e r s o n a s s i g n s t o t h i s bund l e .

P r o v i d e t h e maximum d o l l a r amount t h e y a r e w i l l i n g t o pay

i n t h e f o rma t .

Question-answering subroutine This subroutine takes as input the description of a per-

son’s preferences,D(p), and a question q, and gives the answer the person would give for the ques-
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tion, by issuing a LLM call that reasons over the descriptions of the person’s preferences and the

question asked, according to the following prompt.

Que s t i on prompt :

D e s c r i p t i o n o f s c e n a r i o : D(S)

De s c r i p t i o n o f p e r s o n : D(p)

* * * * *
The p e r s o n i s a s k e d t h e f o l l o w i n g q u e s t i o n : q

* * * * *
P l e a s e r e a s o n th r ough and c r a f t how you t h i n k t h e

p e r s o n would r e s pond to t h e q u e s t i o n .

3.3.3 Pipeline checks

We now describe various checks on the pipelines used to construct the ground-truth simulated per-

son for the purposes of demonstrating the validity of using them to evaluate proxies.

Worked Examples Below are examples of runs of the LLM pipelines. For brevity, we truncate

the seeds and the bundle-valuation subroutine calls to the crucial text. The full versions are available

in Appendix A.

Example Seed Below is an example of a generated seed.
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Cecilia is focused on acquiring the Apple Pencil Pro (code: APPLEPENCILPRO) for

her digital art. She places a high value on tools that enhance her creative

capabilities, specifically seeking industry-leading performance and

precision for her artistic projects. The dollar value for the Apple Pencil

Pro she is willing to pay is estimated at $120, as this aligns with retail

market prices for similar tools.

Cecilia is open to considering additional items that can complement the Apple

Pencil Pro and significantly improve her workflow. Among the other available

items, she may find the following combinations valuable, each associated

with an estimated dollar value based on market rates:

1. **Single Item Bundle:**

- Apple Pencil Pro (code: APPLEPENCILPRO) - $120

2. **Complementary Bundles:**

- iPad Air 11-inch (M2) with Apple Pencil Pro:

- iPad Air (code: IPAD12) - $600

- Apple Pencil Pro (code: APPLEPENCILPRO) - $120

- Total Value: $720

- iPad (9th Generation) with Apple Pencil Pro:

- iPad (code: IPAD9) - $350

- Apple Pencil Pro (code: APPLEPENCILPRO) - $120
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- Total Value: $470

Cecilia considers these other items because they can enhance her digital art

experience, allowing her to utilize the Apple Pencil Pro more effectively.

The iPad models provide her the necessary platform for creative applications

, which is a key factor in her evaluation.

However, Cecilia prioritizes the Apple Pencil Pro as her primary target and

feels that any additional item should not just be an upgrade but must

genuinely elevate her creative process. She is likely to discount bundles

that include items she believes do not contribute directly to her artistic

workflow, such as the Apple AirPods or AirPods Max, as they do not enhance

her art-making activities.

Example Bundle-Valuation Subroutine Call Below is an example of the LLM’s re-

sponse in a bundle-valuation subroutine call issued for the ELECTRONICS scenario, for the simu-

lated bidder Cecilia described in the example seed, and for the bundle consisting of an iPad Air (M2)

and an Apple Pencil (2nd Generation). The LLM reasons through the situation and then gives what

the bidder values the bundle at.

Reasoning:

- The iPad Air (IPAD12) has a baseline value of $600.

- The Apple Pencil (2nd Generation) generally might not add as much value as

the Pro version, which Cecilia values at $120; however, since it is still
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a creative tool, she won’t discount it too heavily but will assign it a

lower value (let’s estimate around $80 instead of the Pro’s $120).

- The value of the proposed bundle can be assessed as follows:

- iPad Air: $600

- Apple Pencil (2nd Generation): $80

- Combined Value: $600 + $80 = $680

Since the Apple Pencil (2nd Generation) is not as substantial an upgrade in her

creative workflow compared to the Pro version, we may apply a slight

adjustment downward, let’s say a 10\% discount for it not being the Pro

model:

Final Estimated Value = $680 - ($680 * 0.10) = $680 - $68 = $612.

In conclusion, the estimated value of the proposed bundle is:

Bundle value: $612

Example Answers to Questions Below are a question and answer for each of the three

scenarios. The answer is given by the question-answering subroutine for a specific seed. The first

seed is the example seed under the ELECTRONICS scenario.

ELECTRONICS scenario (example seed)

Q: What specific types of electronics are you interested in purchasing, and what

is your maximum bid for those items?
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A: I am primarily interested in purchasing the Apple Pencil Pro, with a maximum

bid of $120, and I would also consider bundles that include an iPad if they

enhance my digital art experience.

PRESERVES scenario

Q: What types of gourmet preserves do you prefer (e.g., fruit, savory, unique

flavors), and what is your maximum bid amount for a single jar or a bundle

of jars?

A: I prefer health-conscious fruit preserves with low sugar options,

specifically the Sugar-Free Raspberry Spread and Organic Strawberry Jam, and

my maximum bid for a single jar is $10, while for a bundle including both,

I would consider $17.

TRANSPORTATION scenario

Q: How much would you be willing to spend on all three scooters and all three

bikes, and do you prefer one over the other?

A: I am only interested in the Schwin Suburban and the Titan Escape 3, so I

would be willing to spend around $850 total, but I do not consider the

scooters at all.

Accuracy of pipelines We found that the seeds generated by the seed-generation pipeline

robustly describe a specific valuation. To see this, we examined the inter-model robustness of the

seeds. We compared the valuations generated by the message response LLM pipeline using the GPT-

4o mini model38 to those generated with the Gemini-1.5-flash model16. We found that the valua-
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tions were fairly consistent across models as shown in Figure 3.1. Because the models are provided

by separate teams fromOpenAI and Google, respectively, this shows that the seeds and the valu-

ations interpreted from it via the message-response pipeline are not specific to a specific family of

models and thus to some extent, generally interpretable and robust.

Figure 3.1: Comparison between GPT‐based and Gemini‐based models in bidder robustness tests. GPT‐4o‐mini and
Gemini‐1.5‐flash give similar values in response to value queries evidenced by the dots, each of which representing a
single bundle, falling near the identity GPT‐4o‐mini value ($) = Gemini‐1.5‐flash value line ($).
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Precision of pipelines We also ran a set of experiments to understand the shape of valuations

implied by the seed.

For a specific seed in each scenario, we ran a sequence of steps. At each step, we ran the message

response LLM pipeline for value queries ten times, varying the bundle for each step. For the first

step, we used a bundle of one item and we continued for each subsequent step by incrementally

adding items to the bundle, and then upon reaching a bundle of all the items, we incrementally

removing items from the bundle. The results are shown in Figure 3.2.

The results display sensible characteristics.

First, the preferences are monotonic or, equivalently put, they satisfy free disposal. We can see

in Figure 3.2 that, as we add items to the bundle, the valuation of that bundle consistently goes up

and, similarly, as we remove items from the bundle the valuation of the bundle consistently goes

down. For smaller bundles—those that have zero, one, two or three bundles, numbered in the figure

as Bundle 1, 2, 3, 9, 10, 11, 12—we can see that the boxes, indicating 25th and 75th percentile of the

valuations of the bundles, do not even overlap.

Second, valuations are more precise for smaller bundles—as seen by the narrower boxes in the

figure—which are less complex than other larger bundles. This is sensible as it seems easier to define

the value of a pair of AirPods or an Apple Pencil plus an iPad versus the value of two iPads and two

Apple Pencils. Reasonably, people (including our simulated people) might have less precise valu-

ations over more convoluted combinations. We should note that in our scenarios, bundle size di-

rectly corresponds to how complicated the bundles are. Generally though, this may not be the case.

For example, reserving time slots for a contiguous four hours consisting of eight half-hour chunks

would be much less complicated than three random half-hour chunks throughout the day.
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Figure 3.2: Preference variability and shape across repeated value queries to a single person. Each boxplot displays the
distribution of values for a single bundle (n = 10). Bundle 6, in green, has all 6 items. Bundle 12, in orange, has no
items. Bundle i ≤ 6 has items T1, . . . ,Ti. Bundle 6 < i ≤ 12 has items Ti, . . . ,T6.
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4
Constrained scenarios

We implement various proxy designs that incorporate LLMs into proxies by implementing for each

proxy design ω the CECA-step function, denoted by the subscript C asMω(p)
C , which is required

for the proxy to participate in a CECA in our testing sandbox. A CECA-step message response

function takes as input the announced prices φ and allocates bundle b for person p and gives the

proxy ω(p)’s response to the announced prices and allocation on behalf of the person.

For each of our LLM-based proxy designs or our classical proxy design, ωXOR, we simulate the
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results of the auctions when we use one of the proxy designs to represent each person in the popula-

tion for each of the setups in a benchmark Β1, the creation of which will be described in the follow-

ing section.

4.1 Benchmark creation (Β1)

We use the LLM-based seed generation and message response pipelines as defined in Section 3.3

to construct a benchmark Β1 encompassing the three scenarios: ELECTRONICS, PRESERVES,

and TRANSPORTATION. Β1 consists of nine setups, three setups each for the three scenarios

described in Table 3.1, where Β1 = {βi,j|i ∈ {1, 2, 3}, j ∈ {1, 2, 3}}, βi,j is the setup defined by the

tuple (Si,Pi,j), andPi,j is a population of three simulated people generated to participate in Si, and

each simulated person has ground-truth XOR valuation θi,j,k.

Β1 will be used to evaluate and compare different proxy designs.

4.2 Pure-LLM proxies

We first consider pure-LLM proxieswhich exclusively use LLMs to make decisions on submitting

manifest valuations to the auction (viaMω(p)
C ) and on communicating with the bidder.

4.2.1 Design of pure-LLM proxies

We consider two kinds of pure-LLM proxies. Drop-in LLM proxies are those that only use value and

demand queries when messaging their person. They are drop-in replacements for proper-learning

proxies like ωXOR because they message their person with the same message types as ωXOR: value

queries and demand queries. Plus-questions LLM proxies use natural language questions in addition

to value queries and demand queries when messaging the person they represent.
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4.2.2 Drop-in LLM proxy

We give two drop-in LLM proxy designs.

Design 1 ωVD,1 maintains in its memory a transcript of the conversation, ci (with i being the

given iteration of the auction), and a hypothesis XOR valuation θ = (B, v). For person p and its

proxy p′ = ωVD,1(p), the algorithm implementsMp′
C as the algorithm, which when called with

prices φ and allocated bundle b, prompts an LLMwith the scenario S , φ, b, and ci. The LLM is

asked to choose one of the following actions:

1. to message the person a value query;

2. to message the person a demand query; or

3. to reply to the auction that the person is satisfied.

With (1), the LLM also specifies a bundle b. We call a value queryMp
V(b) to message the person

to receive their value ν for the bundle. This is used to create an updated hypothesis valuation θ′ =

(B′, v′), where B′ = B ∪ {b} and v′ is equal to vwhen given any item from B, and is equal to νwhen

given b.

With (2), we call a demand query,Mp
D(φ, b) to get the person’s response and demanded bundle,

(r, b′). If r = 1, the proxy forwards the information that the person is happy. If it is not, then we call

Mp
V(b′), receiving the person’s value ν of b′, and θ is correspondingly updated.

With (3), the bidder simply returns that it’s happy, i.e. (1, θ).

Design 2 ωVD,2 is similar to ωVD,1 except that instead of directly returning its updated hypoth-

esis valuation θ′ = (B′, v′) it computes an inferred valuation θ∗ = (B∗, v∗), which gives the same

value v∗(b1) = v′(b1) for all b1 ∈ B′ and additionally infers values v∗(b2) for all b2 ∈ B′c, where B′c

is the set of bundles without explicitly specified values.
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To construct θ∗, we first construct an inference function, γ : B → R+. γ is constructed at

iterations of the CECA auction, including the first iteration, using an LLM pipeline. The LLM

pipeline, given the proxy’s memory, ci, of their conversation with p, the scenario S , and a bundle β,

infers a value for β.

The pipeline first collates a prompt of the form

Here i s t h e s c e n a r i o d e s c r i p t i o n : D(S)

Here i s a t r a n s c r i p t o f t h e c o n v e r s a t i o n w i th t h e p e r s o n : ci

What do you t h i n k t h e p e r s o n would v a l u e t h e f o l l o w i n g

bund l e a t ? D(b∗)

and then calls an LLMwith this prompt. The value the LLM responds with is denoted ν.

Thus, γ can be constructed by calling the pipeline with all bundles β ∈ B′c. We set γ(β) to ν · ε,

where we discount the value ν given by the LLM by a constant factor of ε = 0.75 as it is better

for the person to under-represent their valuation because otherwise their Lindahl prices under the

auction will be set artificially high.*

Having constructed γ, we now construct θ∗. To do this, we follow the following procedure:

maintaining a working θ∗ = (B∗, v∗) initialized to θ′, we iterate over an enumeration of all bun-

dles in B′c (the bundles where there is no explicit valuation) in ascending order of the number of

items they contain and, for each bundle β, if β /∈ B′ and v∗(β) < γ(β), we add β to B∗ and define

v∗(β) = γ(β).

The operation of the proxy ωNVD has complexity exponential in the number of LLM calls be-

cause the calculation of γ requires an enumeration of all bundles, which has complexity exponential

in the number of items. We will describe a strategy to restrict the number of bundles we need in the

*This value was chosen for ε by visual examination of the variability plots in Figure 3.2 and noting that
75% of the 75th percentile line indicated by the top of the boxplots was always below the mean value for all
bundles and scenarios.
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domain of γ in Chapter 5.

4.2.3 Plus-questions LLM proxy

We give one design for a plus-questions LLM-proxy, ωNVD, that is based on the design of ωVD,2.

MωNVD(p)
C is the algorithm that is identical toMωVD,2(p)

C except that at the very first iteration of

the auction, the proxy asks a natural language question q to the person they represent by calling

Mp
N(q), where q is given by the LLM response to a prompt asking, “What should the proxy ask the

person next to better understand their preferences?” givenD(S).

Note that ωNVD, like ωVD,2, also gives inferred θ∗. The additional information p provides in an-

swering q is recorded in ci and thus gives more information to the LLM pipelines for deciding what

action to take and for inferring the valuations p holds for bundles without explicitly specified values.

4.2.4 Simulation results for pure-llm proxies

We present in Figure 4.1 the results of the simulations with ωXOR, ωVD,1, ωVD,2, and ωNVD on our

benchmark Β by graphing PEn, each proxy’s average auction efficiency, versus n, the average number

of interactions between a proxy and the person they represent. We plot up to n = 16 to illustrate the

short-run behavior of these proxies; the long-run behavior will be examined in the following section.

We find through simulation that we can reach more efficient outcomes more quickly using LLM-

based proxies. We can reach 75% efficiency in ten interactions between the person and their proxy

with ωXOR, in four interactions with ωVD,2, and in two interactions with ωNVD.

We also see from examination of Figure 4.1 that in the short-run the LLM-based proxy ωNVD

rapidly climbs in efficiency relative to the classical proxy ωXOR, but the relative advantage of the

LLM-based proxy diminishes with more iterations.
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Figure 4.1: Average percent efficiency of the auction run under the three scenarios with three people participating in
each. Anchoring on our XOR elicitation proxy, we see that the drop‐in proxy ωVD,1 using an LLM performs similarly,
both reaching 75% efficiency in around 10 interactions between person and proxy. The plus‐questions proxy ωVD,2
performs markedly better, reaching 75% efficiency in four interactions that otherwise would take ten interactions. We
see that the proxy ωNVD, which is also allowed to use natural language questions, reaches the same 75% efficiency in
two interactions.

4.3 Hybrid XOR-LLM proxies

We now consider the hybrid XOR-LLM proxywhich is a hybrid of the classical proxy ωXOR and the

pure-LLM based proxy ωNVD. The goal is to combine the short-run rapid increase in efficiency of

the pure-LLM proxies, while maintaining the long-run convergence of classical proxies to efficient

outcomes.

4.3.1 Design of hybrid XOR-LLM proxies

The hybrid XOR-LLM proxy ωH combines ωNVD and the ωXOR. For person p and proxy p′ =

ωH(p), we defineM
p′
C as follows.

At the start whenMp′
C is called, we runMωNVD(p)

C such that the proxy is asking natural language

questions and using the LLMs to infer valuations.

After a set number of iterations, α, we switch the algorithm such that whenMp′
C is called we
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switch to runningMωXOR(p)
C where the proxy now uses the proper-learning algorithm. Through-

out both the first α iterations and the period onwards, we continuously maintain and update the

hypothesis valuation θ′.

Furthermore, before the switchover, recall that withMωNVD(p)
C we construct the inference func-

tion γ and at each iteration, construct and return the inferred valuation θ∗. After the switchover, we

no longer construct γ in the same manner, but we continue constructing and returning θ∗ based on

the updated hypothesis valuation θ′ given byMωXOR(p)
C . We specify that at every iteration after the

switchover, we update γ such that we have new γ′(b) = δ · γ(b) for all b ∈ B and for 0 ≤ δ < 1.

This has the purpose of maintaining, in the short run, the benefits of using an inferred valuation,

but in the long run, removing the inferred valuation by decaying γ to 0.

4.3.2 Simulation results for hybrid XOR-LLM proxies

The hybrid XOR-LLM proxy ωH has the short-term rapid increase in efficiency without sacrificing

long-term ability of the proxy to exactly learn the person’s valuation and of the auction using the

proxy to converge to the social-welfare-maximizing outcome. For the following two experiments, we

set α = 10, δ = 0.95.†

First, we ran ωH and ωXOR as preference elicitation algorithms, by running the auction with only

one person, using either ωH or ωXOR as a proxy, and constantly giving prices equal to the manifest

valuation and allocating the empty bundle, and measured at each step n, the number of interactions

the proxy had with the person they represent, and PEn, the average auction efficiency for each proxy.

The results, plotted in Figure 4.2(a), show that ωH approximates the person’s valuation signifi-

cantly quicker as the line for ωH is significantly and consistently lower than that for ωXOR. To put

†We set α to 10 to switch over to the classical proxy after an initial burst of LLM calls in the short-run.
Discerning the most efficient setting of α would require more consideration, and is likely dependent on the
number of items. We set δ to 0.95 to avoid abrupt shifts in manifest valuations, but also relatively quickly
decay γ.
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numbers to it, in all three scenarios, ωH gets to a better approximation of the person’s valuation in

5 interactions than ωXOR does in 50 interactions. We note, however, that at the very end, ωXOR gets

to 0 error, e.g. exactly learns the person’s valuation, around 10 interactions quicker than ωH. This is

because the LLM is sometimes inefficient with its queries. Additionally, though helpful for approxi-

mations, natural language questions don’t aid as much in exact learning.

Second, we ran the auction simulations identical to those in Section 4.2.4. We aggregate and plot

the data according to the same procedure as in Section 4.2.4 and extend it to include long-run data

all the way until both proxies reach 100% efficiency. This is given in Figure 4.2(b).

We see that in the initial phase, ωH rapidly reaches fairly efficient outcomes. This matches the

results shown for ωNVD which is expected as the algorithmsMωH(p)
C andMωNVD(p)

C are identical for

the first α iterations. We see that the efficiency of the outcome steadily increases as we increase the

number of interactions—in line with ωXOR—such that the social-welfare-maximizing outcome is

also reached.
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Figure 4.2: Performance of the hybrid XOR‐LLM proxy ωH (in red) and the XOR elicitation proxy ωXOR ( in teal) under
varying numbers of interactions with the person they represent. Panel (a) shows that ωH gets to a good approximation
of the person’s valuation significantly quicker than ωXOR while still converging to the person’s exact valuation. Panel
(b) shows that when running the auction with ωH, similar to Figure 4.1 we get a sharp increase in efficiency in the initial
stages, while still converging on the welfare‐maximizing outcome in the long run.
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5
Scaling-up scenarios

In this chapter, we demonstrate the removal of the fact that the number of LLM calls that we use

has complexity exponential in the number of items. This exponential complexity is incurred both

on the simulation end (for the ground-truth simulated bidders to craft responses to demand query)

and on the inference end (for the proxies ωVD,2, ωNVD, and ωH to infer a hypothesis valuation).

To evaluate the effectiveness of this approach to removing the exponential complexity, we com-

pare the performance of this approach, which uses a partial enumeration of bundles, to that of the
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original approaches presented in Chapter 3 and Chapter 4, which use a full enumeration of bun-

dles. We evaluate these approaches on an expanded benchmark Β2.

5.1 Benchmark creation (Β2)

Β2 is similar to Β1: for both benchmarks, we use the LLM-based seed generation described in Sec-

tion 3.3.1 and message-response pipelines described in Section 3.3.2 to construct a benchmark en-

compassing the three scenarios. Β2 is a larger benchmark than Β1. Β2 consisting of thirty-six setups,

with six setups per each of the three scenarios, where Β2 = {βi,j|i ∈ {1, 2, 3}, 1 ≤ j ≤ 12}, βi,j is

the setup (Si,Pi,j),Pi,j is a population of three simulated people generated to participate in Si, and

each simulated person has ground-truth XOR valuation θi,j,k.

Our use of Β1 differs from Β2 in a crucial respect. In the previous chapter, the ground-truth

XOR valuation θi,j,k was directly used to respond to queries from the proxies. For the purposes of

this chapter, we cannot directly use θi,j,k to respond to queries from the proxy, because, in this chap-

ter, we wish to compare the performance of a partial enumeration of bundles (with non-exponential

complexity) versus the performance of a full enumeration of bundles (with exponential complexity).

It would not be appropriate to compare a partial enumeration with a full enumeration queried from

θi,j,k using the same θi,j,k to evaluate its performance in the sense that the full enumeration would be

overfitted to θi,j,k. So instead we construct a θ′i,j,k by asking the bidder for an additional time what

they would value every bundle at in the same manner we constructed θi,j,k.

We use θ′i,j,k during the course of the simulated auctions to implement the message response

functionsMpi,j,k
V andMpi,j,k

D to give the simulated person’s response to value and demand queries.

We use θi,j,k as the ground-truth valuation to evaluate the social-welfare of a given allocation. Equiv-

alently put, we run the auction the same way as we did in the previous chapter, except that after the

allocation is given we ask the bidder again to confirm for a second time what they would value that
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bundle at.

5.2 Removing exponential complexity on the simulation end

In this section, we work towards the removal of the exponential complexity in the simulation frame-

work caused by the construction of a simulated person’s dense-preferences XOR valuation θ, which

as previously described in Chapter 3, requires the full enumeration of valuations over all bundles

b ∈ B. We will remove the exponential complexity by replacing the simulated persons’ dense-

preferences θwith sparse-preferences π; π will be constructed with a number of LLM calls with

complexity polynomial in the number of items.

5.2.1 Construction of sparse-preferences

The construction of sparse-preferences π for a simulated person will be done by running a prefer-

ence elicitation procedure directly on the simulated bidders. Preference elicitation is known to have

polynomial-complexity in terms of the number of atomic bundles26, so we must also ensure that

the number of atomic bundles has polynomial-complexity. This point will be discussed after the

preference elicitation procedure is described.

We will use the XOR preference elicitation algorithm described in Section 2.3.2 to construct π.

When we previously used the XOR preference elicitation algorithm to construct preferences in Sec-

tion 2.4.3 for ωXOR and in Section 4.3.1 for ωH, we could call demand queriesMp
D in the preference

elicitation algorithm. However, because our implementation of the demand query response func-

tion for simulated person p given in Section 3.3.2,Mp
D, requires first defining the XOR preferences

of p, we cannot rely on calling demand queries to run our preference elicitation algorithm.* Thus,

*Suppose for the sake of argument that we did use demand queries for preference elicitation to construct
π. Using demand queries means that we would have needed to first have defined the XOR preferences of p.
We cannot use sparse-preferences π to circularly construct π so we would have to use the dense-preferences
θ. Thus, we would have to construct θ to construct π and thus the construction of π would have exponential
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we implement the equivalence query response function to allow the simulated bidder to directly

respond to equivalence queries without first defining the XOR preferences of p. This function is

denotedMp
E.

To ensure polynomial-complexity in the number of atomic bundles, we implement it such that a

simulated person only responds to an equivalence query saying that a hypothesis valuation is “Not

equivalent” when the deviation from the simulated person’s valuation is above a certain threshold ε.

We can raise the threshold ε as appropriate to limit the number of atomic bundles.†

Implementation of equivalence query The equivalence query response function,Mp
E,

is implemented by an LLM call. We prompt the LLM to give the simulated person’s response to

the equivalence query given a description of the scenarioD(S) and the person’s preferenceD(p),

the hypothesis XOR valuation defined in terms of the atomic bundles bi and their corresponding

valuations vi, and the threshold ε. When using the equivalence query, we maintain a memory of

prior value query responses during the preference elicitation process and prompt the LLMwith it

to simplify its task of responding to equivalence queries. Below is the prompt for the equivalence

query LLM call.

E q u i v a l e n c e Query Prompt :

D e s c r i p t i o n o f s c e n a r i o : D(S)

De s c r i p t i o n o f t h e pe r son ’ s p r e f e r e n c e s : D(p)

* * * * *

complexity due to the exponential complexity of constructing θ. So, we cannot rely on demand queries for
the construction of π.

†In fact, when ε = 0, empirically, the simulated person almost never reports that the hypothesis valuation
was equivalent. The LLMwould always find some trivial reason to be upset with the hypothesis valuation.
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Hypo t h e s i s XOR v a l u a t i o n f u n c t i o n a s a l i s t o f a t om i c b i d s :

− Atomic b i d 1 : Bund l e : D(b1) ; Va lu ed a t v1

− Atomic b i d 2 : Bund l e : D(b2) ; Va lu ed a t v2

− . . .

* * * * *
E x p l i c i t v a l u a t i o n s :

− Bund l e : D(b′1) ; Va lu ed a t v′1

− Bund l e : D(b′2) ; Va lu ed a t v′2

− . . .

* * * * *
P l e a s e i d e n t i f y which bund l e s , i f any , t h e h y p o t h e s i s XOR v a l u a t i o n

f u n c t i o n i s most i n c o r r e c t compared to t h e pe r son ’ s e x p l i c i t v a l u a t i o n s

and p r e f e r e n c e s . I g n o r e d i s c r e p a n c i e s l e s s t h an ε .

We use the XOR preference elicitation algorithm using the equivalence query described above to

obtain sparse preferences πi,j,k for each person pi,j,k in the benchmark Β2.

5.2.2 Sparse preferences performance

For the people pi,j,k in the populationsPi,j in Β2, their sparse preferences—the XOR valuations

πi,j,k—have an average of 16 atomic bids while their dense preferences have the full 64 atomic bids.

Thus, the effective size of their preferences, required for responding to value and demand queries, is

25% of that under dense preferences.

For each setup (Si,Pi,j) ∈ Β2, using the integer programming method described in Section 2.4.1,

we solve for the social-welfare maximizing allocation when using the sparse preferences, {πi,j,1, πi,j,2, πi,j,3},

for the three people in the populationPi,j and we also solve for the social-welfare maximizing allo-
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cation when using dense preferences, {θ′i,j,1, θ′i,j,3, θ′i,j,2}, for the three people in the populationPi,j.

We then solve for the auction efficiencies for both allocations, yielding AEi,j,π and AEi,j,θ, respec-

tively, by using the ground-truth valuations {θi,j,1, θi,j,2, θi,j,3} for the people.

We calculate for each setup, AEi,j,θ′ −AEi,j,π, the difference in percent auction efficiency between

using dense preferences and sparse preferences. We plot these differences in Figure 5.1 as well as the

average difference. Statistical significance of the difference between using sparse and dense pref-

erences is computed using a one-sample t-test on whether the percent differences are significantly

different from 0, where 0 would indicate no difference between sparse and dense preferences.

We see that there is no statistically significant difference between using sparse and dense prefer-

ences in the TRANSPORTATION and PRESERVES scenario. There is a slight advantage in terms

of auction efficiency for using dense preferences over sparse preferences in the ELECTRONICS

scenario.

The use of sparse preferences over dense preferences is justified because the sparse preferences

have polynomial-complexity, while the dense preferences have exponential-complexity, and using

sparse preferences results in no statistically significant loss in efficiency or minimal loss in efficiency.
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Figure 5.1: Percent difference in auction efficiency between using the dense‐preferences simulated person and a sparse‐
preferences simulated person. We run the auction with the dense or sparse preferences simulated person and then
evaluate the auction efficiency using the ground‐truth simulated person. We see that there is no significant difference
between the dense and the sparse preferences simulated person under the TRANSPORTATION and the PRESERVES
scenario.
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5.3 Removing exponential complexity on the inference end

In this section, we work towards the removal of the exponential complexity in the LLM proxies,

specifically, the fact that the number of LLM calls used in the construction of the inferred valua-

tions for ωVD,2, ωNVD, and ωH has exponential complexity in the number of items. Recall that in

our design for these proxies in Chapter 4, for the proxy to construct the updated hypothesis valua-

tion, which is submitted to the auction as the manifest valuation, the proxy needed to enumerate all

bundles and use an LLM call to infer the person’s valuation for each bundle. This means that those

proxies use LLM calls with exponential complexity.

To remove this exponential complexity, instead of inferring the person’s valuation for all pos-

sible bundles, we infer the person’s valuation only for bundles withK items or fewer. We use this

restricted-inference strategy to modify ωH to create the proxy design, ωH,K. We simulate auctions us-

ing the setups of Β2 when using ωH,K whereK = 1, 2, 3, 6. Each scenario contains exactly 6 items so

ωH,6 is equivalent to the ωH and reflects the hybrid proxy with unrestricted inference.

We report in Table 5.1 for n = 5, 7, 9 the mean and standard deviation of PEn, the auction

efficiency at n interactions across the thirty-six setups of Β2, for ωH,K and the ωXOR classical proxy.

We choose n = 5, 7, 9 because the hybrid proxy switches over from using LLM-based methods

at α = 10 iterations. Statistical significance is computed using a one-sample t-test on whether the

differences in auction efficiency for each setup are significantly different from 0, where 0 would

indicate no difference between proxy designs.

We see from Table 5.1 that we can significantly restrict proxies’ use of LLM-inference to update

the hypothesis valuation from full inference withK = 6 to withK = 2 orK = 3 bundles or fewer

without a loss in auction efficiency. There is no statistically significant difference betweenK = 6

andK = 2 orK = 3 at any of n = 5, 7, 9. Thus, in these toy scenarios, we can go from inferring

over 2N possible bundles to inferring over the
(6
2
)

= 15 bundles, which have 2 items or fewer.
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Restricting inference as such results in a number of LLM calls with complexity polynomial in the

number of items, because
(n
2
)
is polynomial in n.

Note, though, that we cannot restrict to only bundles of 1 item or fewer without efficiency loss.

This is likely due to the design of the scenarios where there are complementary pairs of items, as well

as the limited number of items (N = 6) which means that as the number of iterations quickly in-

creases past 6 the LLM-inference on the 6 bundles that have only one item is less impactful towards

increasing auction efficiency.

(a) n = 5

Proxy Mean Std Dev

ω∗†
H,6 0.73 0.11

ω∗†
H,3 0.76 0.09

ω∗†
H,2 0.74 0.12

ωH,1 0.46 0.11
ωXOR 0.53 0.13

(b) n = 7

Proxy Mean Std Dev

ω∗†
H,6 0.75 0.09

ω∗†
H,3 0.76 0.10

ω∗†
H,2 0.77 0.14

ωH,1 0.60 0.18
ωXOR 0.61 0.11

(c) n = 9

Proxy Mean Std Dev

ω∗†
H,6 0.77 0.09

ω∗
H,3 0.74 0.12

ω∗
H,2 0.76 0.14

ωH,1 0.69 0.14
ωXOR 0.65 0.13

Significance Indicators:
∗ Significantly different from ωXOR (p < 0.05)
† Significantly different from ωH,1 (p < 0.05)

Table 5.1: Performance ofK‐hybrid LLM‐XOR proxies in terms of aggregated auction efficiency under limited numbers
of interactions with the bidders. Performing inference only on bundles of sizeK = 2, 3 or smaller does not have
substantial impacts on performance versus performing full inference. Performing inference on bundles of only one item
does have a significant impact on performance, in part due to not being able to capture complementary pairs of items.
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6
Conclusion

In this work, we presented an innovative approach to preference elicitation in combinatorial auc-

tions by integrating Large Language Models (LLMs) into proxies. Combinatorial auctions (CAs)

play a crucial role in efficiently allocating multiple items, especially in complex scenarios such as

spectrum sales and public goods distribution. However, the inherent exponential complexity of

CAs poses significant challenges for both bidders and auctioneers. Traditional query-elicitation-

based methods, while theoretically efficient, often impose substantial cognitive burdens on bidders
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due to the extensive communication and contemplation required. Our LLM-based proxy design

mitigates this issue by leveraging natural language interactions, thereby streamlining the elicitation

process and significantly reducing the number of necessary queries.

We designed a simulated testing sandbox to empirically evaluate our LLM-based proxy designs.

We used LLM pipelines to create simulated bidders who mimicked human-like responses to queries.

The LLM pipelines were used both to create natural language descriptions of preferences—seeds—

under various scenarios and to craft responses to natural language questions as well as to value, de-

mand, and equivalence queries. We showed that these pipelines created seeds that resulted in consis-

tent interpretations across LLMs from different providers. We further showed that the valuations

the pipelines characterized had properties of free disposal and reasonable precision.

However, we did not undertake any comparisons with human data. Thus, we must be wary of

the degree to which our testing sandbox mimics human behavior. Specifically, future work is neces-

sary to understand how representative the natural language descriptions of preferences we generate

in the form of seeds are of human preferences, as well as how reasonable our simulated persons’ re-

sponses to queries are. We make efforts to ensure that the queries issued by the proxies to the person

they represent—value, demand, and natural language questions—are reasonably simple for people

to respond to, and a more precise measure of the burden on bidders would tease apart the relative

burden of various query types. We are encouraged, though, by the breadth of literature showing the

ability of LLMs to mimic human responses in many diverse domains, especially the literature show-

ing the ability to prompt LLMs with human preferences and receive well-calibrated preferences over

unseen alternatives13,40.

Empirical evaluations demonstrate that LLM-based proxies, particularly those that use LLMs

to infer the bidder’s valuation on unspecified bundles, achieve approximately efficient auction out-

comes up to five times faster than classical XOR elicitation proxies. As illustrated in Figure 4.1,

proxies such as ωVD,2 and ωNVD reach 75% of the social welfare-maximizing outcome with markedly
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fewer interactions compared to the ωxor proxy. Furthermore, the hybrid XOR-LLM proxy ωH not

only accelerates the initial elicitation phase but also converges to the social-welfare-maximizing out-

come, by combining the rapid approximation capabilities of LLMs with the guarantees of classical

preference elicitation methods.

Additionally, the robustness of LLM-based bidder modeling was validated across different mod-

els and repeated trials, ensuring consistent and reliable preference representations. This robustness

underscores the feasibility of employing natural language processing in complex auction settings. By

facilitating more efficient and accurate preference elicitation, LLMs contribute to the overarching

goal of allocating resources to those who value themmost.

A significant feature presented in this work pertains to the scalability of the approach. In Chap-

ter 5, we address the exponential complexity inherent in both the simulation and inference processes

present in Chapter 3 and Chapter 4, and demonstrate that our methodology should remain efficient

even as the size and complexity of the auction environment grow. Specifically, we introduced sparse-

preference models that replace dense XOR valuations, reducing the computational burden from

exponential to polynomial complexity without sacrificing auction efficiency. Our experiments on

the expanded benchmark Β2 revealed that using sparse preferences maintained auction efficiency in

the TRANSPORTATION and PRESERVES scenarios, with only a minimal impact in the ELEC-

TRONICS scenario. This outcome validates the effectiveness of sparse preference elicitation in

large-scale settings, ensuring that our approach remains practical for real-world applications where

the number of bundles can be prohibitively large.

On the inference side, we further enhanced scalability by limiting the scope of bundle valua-

tions to those containing up toK items. This restricted-inference strategy significantly reduces the

computational demands of the LLM proxies while retaining high levels of auction efficiency. Our

findings indicate that inferring valuations for bundles withK = 2 orK = 3 items suffices to achieve

performance comparable to full enumeration (K = 6) across various interaction levels. This selec-
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tive inference approach not only streamlines the inference process but also ensures that the system

remains responsive and efficient as the complexity of auction scenarios increases. Notably, restrict-

ing inference to single-item bundles (K = 1) was insufficient, highlighting the necessity of capturing

multi-item interactions to maintain auction performance.

However, our studies on the polynomial-complexity strategies for simulation and proxy design

are limited to the three scenarios with n = 6 items each. Thus, what we have shown is that we can

use algorithms with polynomial complexity without significant effects on social welfare to replace

algorithms that had exponential complexity in these scenarios. By using the polynomial-complexity

algorithms, we reduced the size of the simulated person’s preferences from 64 atomic bids to an av-

erage of 16. We also reduced the LLM calls used by the LLM-based proxies for inferring valuations

from considering all bundles without explicit valuations out of 64 possible bundles to only 15 pos-

sible bundles withK = 2 items or fewer. We leave the complete demonstration of running the

simulated combinatorial auctions with large-scale numbers of items to future work. We predict that

as the ecosystem around training and deploying LLMs becomes more developed, many other prac-

tical concerns will diminish—the dollar costs associated with making LLM calls will decrease, the

reasoning powers of LLMs will increase, and the context length of LLMs will increase—meaning

that we will be able to leverage the polynomial-complexity algorithms in an effective manner at a

large scale.

The removal of exponential complexity on both the simulation and inference ends marks a piv-

otal step toward deploying LLM-based proxies in large-scale, real-world auction environments. By

ensuring that computational resources are managed effectively, our approach can scale to accommo-

date auctions with a vast number of items and participants without sacrificing efficiency or outcome

quality. This scalability is crucial for practical adoption, as it enables the application of sophisticated

preference elicitation techniques in diverse and dynamic market settings.

Moreover, this research exemplifies an exciting frontier in the use of LLMs to simulate economic
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settings and test auction and proxy designs. By harnessing the advanced natural language under-

standing and reasoning capabilities of LLMs, we can create more realistic and adaptable models of

human behavior in auction settings, enabling the testing and refinement of mechanisms in a con-

trolled yet dynamic environment. This synergy between artificial intelligence and economic theory

opens up new possibilities for designing auctions that are not only theoretically sound but also prac-

tically viable and user-friendly. The ability to simulate complex interactions and preferences using

LLMs may accelerate the innovation cycle by allowing for rapid prototyping and evaluation of novel

auction formats and proxy strategies.

In summary, our findings highlight the potential of LLMs to revolutionize preference elicita-

tion in multiagent systems by making the process more intuitive via natural language questions and

less burdensome through significantly fewer queries for participants. By addressing the exponential

complexity challenges inherent in combinatorial auctions, our approach not only enhances auc-

tion efficiency but also might promote broader participation by decreasing the burden on bidders.

Our construction of the non-exponential version of the simulated persons and proxies, without

meaningful loss in auction efficiency, underscores the viability of this approach for scalable auction

simulation and design. Future research could explore the scalability of this approach to even larger

auction environments and investigate the integration of the developments in increasingly advanced

LLM capabilities to further enhance elicitation efficiency and accuracy at lower computational

costs.
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A
Example LLM outputs

A.1 Example Seed

Cecilia is focused on acquiring the Apple Pencil Pro (code: APPLEPENCILPRO) for

her digital art. She places a high value on tools that enhance her creative

capabilities, specifically seeking industry-leading performance and
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precision for her artistic projects. The dollar value for the Apple Pencil

Pro she is willing to pay is estimated at $120, as this aligns with retail

market prices for similar tools.

Cecilia is open to considering additional items that can complement the Apple

Pencil Pro and significantly improve her workflow. Among the other available

items, she may find the following combinations valuable, each associated

with an estimated dollar value based on market rates:

1. **Single Item Bundle:**

- Apple Pencil Pro (code: APPLEPENCILPRO) - $120

2. **Complementary Bundles:**

- iPad Air 11-inch (M2) with Apple Pencil Pro:

- iPad Air (code: IPAD12) - $600

- Apple Pencil Pro (code: APPLEPENCILPRO) - $120

- Total Value: $720

- iPad (9th Generation) with Apple Pencil Pro:

- iPad (code: IPAD9) - $350

- Apple Pencil Pro (code: APPLEPENCILPRO) - $120

- Total Value: $470

Cecilia considers these other items because they can enhance her digital art
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experience, allowing her to utilize the Apple Pencil Pro more effectively.

The iPad models provide her the necessary platform for creative applications

, which is a key factor in her evaluation.

However, Cecilia prioritizes the Apple Pencil Pro as her primary target and

feels that any additional item should not just be an upgrade but must

genuinely elevate her creative process. She is likely to discount bundles

that include items she believes do not contribute directly to her artistic

workflow, such as the Apple AirPods or AirPods Max, as they do not enhance

her art-making activities.

In conclusion, while Cecilia’s main interest is the Apple Pencil Pro, she values

potential bundles that combine it with compatible iPads, estimating these

combinations could be worth between $470 and $720 depending on the iPad

model chosen, thus weighing her bids according to the increased

functionality they provide for her creative work.

Cecilia’s evaluation process for complex bundles involves a systematic

assessment of how each item’s inclusion enhances her creative workflow. She

prioritizes the Apple Pencil Pro as her core target, and her perception of

any additional items is predominantly based on their ability to provide

meaningful improvements to her digital art experience.

When considering large bundles, Cecilia does not view them merely as additive
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collections of items; she assesses the synergy between constituents. Each

additional item must deliver substantial value to her artistic capabilities;

otherwise, she perceives them as superfluous and potentially detracting

from her primary objective. Therefore, while she appreciates bundles that

combine compatible products (like the iPads with the Apple Pencil Pro) for

their holistic benefits, she remains cautious with larger bundles that

include irrelevant components, which she would discount heavily or avoid.

Regarding the necessity of large bundles, Cecilia is not averse to accepting

items individually; rather, she prefers a tailored approach that allows her

to select only those products that meet her artistic needs. However, if a

bundle includes items she considers essential or significantly enhancing (

like the iPad models), she is more likely to accept it despite its size.

Cecilia values multiples of similar items additively, but she applies a discount

for redundancy. For example, if two artistic tools serve similar functions,

she might estimate their combined value at 80% of the total individual

retail prices, reflecting a 20% discount on the perceived benefit of

repeated functionality. Her evaluation criteria incorporate percentage

discounts based on utility:

1. **Complementary Value:** Items that enhance functionality (like the iPads

with the Apple Pencil Pro) are valued at a premium, with a direct uplift of
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about 20% to 30% in her willingness to pay.

2. **Substitution Effects:** If an item is viewed solely as a substitute rather

than an enhancement (e.g., she may consider less advanced versions or

unnecessary accessories), she would apply a significant discount,

potentially around 50% or more on her perceived value.

3. **Bulk Effects:** For larger bundles, Cecilia’s assessment would involve a

progressive discount model; the first two items may maintain nearly full

value, but each subsequent item may see a decline in perceived value of

about 10% to 15%, reflecting the diminishing returns of utility in a larger

collection.

In conclusion, Cecilia’s decision-making process revolves around a clear

framework where she rigorously evaluates the functional contributions of

each item based on how effectively they can support and amplify her artistic

endeavors. This meticulous approach ensures that her bids are strategically

aligned with her artistic goals, emphasizing quality and relevant

enhancements over quantity.

76



A.2 Example Bundle-Valuation Subroutine Call

To estimate Cecilia’s value for the proposed bundle of items (which includes the

iPad Air 11-inch (IPAD12) and the Apple Pencil (2nd Generation) (

APPLEPENCIL2)), let’s follow the five-step process outlined:

1. **Check if the person has explicitly stated the value for that bundle**:

Cecilia has not explicitly stated a value for the bundle consisting of the

iPad Air and the Apple Pencil (2nd Generation).

2. **Find the closest bundle(s) from the given bundle that the person has

explicitly valued**:

- She has explicitly valued the iPad Air (IPAD12) bundled with the Apple

Pencil Pro (APPLEPENCILPRO) at $720.

- She has also valued the iPad (IPAD9) bundled with the Apple Pencil Pro (

APPLEPENCILPRO) at $470.

3. **Identify the process by which the person has specified they will calculate

their value**:

- Cecilia applies a premium value to combinations of compatible items that

enhance her functionality.

- Since she highly values the Apple Pencil Pro for her creative work, the

inclusion of an Apple Pencil (2nd Generation) will likely have a

different perceived value compared to the Pro variant.
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- However, she has not specifically stated any value for the Apple Pencil (2

nd Generation) or how it compares to the Pro version in this type of

bundle.

4. **Identify any other relevant criteria**:

- Cecilia would likely apply a discount for the inclusion of the Apple Pencil

(2nd Generation) rather than the Apple Pencil Pro.

- The iPad Air (M2) bundle was valued higher when combined with the Pro

version of the Pencil, indicating she sees higher value in advanced tools

that enrich her creative workflow.

5. **Factor (2), (3), and (4) in to estimate the person’s value**:

- The iPad Air (IPAD12) has a baseline value of $600.

- The Apple Pencil (2nd Generation) generally might not add as much value as

the Pro version, which Cecilia values at $120; however, since it is still

a creative tool, she won’t discount it too heavily but will assign it a

lower value (let’s estimate around $80 instead of the Pro’s $120).

- The value of the proposed bundle can be assessed as follows:

- iPad Air: $600

- Apple Pencil (2nd Generation): $80

- Combined Value: $600 + $80 = $680

Since the Apple Pencil (2nd Generation) is not as substantial an upgrade in her
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creative workflow compared to the Pro version, we may apply a slight

adjustment downward, let’s say a 10% discount for it not being the Pro model

:

- Final estimated value: $680 - ($680 * 0.10) = $680 - $68 = $612.

In conclusion, the estimated value of the proposed bundle is:

‘‘‘Bundle value: $612‘‘‘
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