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Isaac Newton is Isaac Newton. His physics, mathematics, and language

have profoundly shaped the modern world. So much so, in fact, that his once

radical ideas now seem natural and inseparable from our own. This makes it

hard to discern which of his intuitions were once counterintuitive or otherwise

special.

This leads us to wonder: What, exactly, makes Newton’s intuition so ex-

ceptional?

In this paper, we will explore the origins of Newton’s remarkable intu-

ition in physics, tracing how Greek geometry, Aristotelian philosophy, and the

Atomist tradition set the stage for Newton’s achievements. First, we briefly

state Einstein’s praise for Newton’s “differential law” as a way of contextu-

alizing our discussion. Next, we discuss Newton’s geometry beginning with

Feynman’s perspective. We then compare Aristotle’s final-cause-driven world-

view with the mechanical worldview associated with ancient Atomists and

Newton. Finally, we argue that Newton’s true genius lay in his “clear con-

ception of the differential law” as stated by Einstein, shaped by a sustained,
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methodical approach rather than a single stroke of insight.

It is just two hundred years ago that Newton closed his eyes. It be-

hooves us at such a moment to remember this brilliant genius, who

determined the course of western thought, research and practice to

an extent that nobody before or since his time can touch.

. . .

No doubt the great materialists of ancient Greece had insisted that

all material events should be traced back to a strictly regular series

of atomic movements, without admitting any living creature’s will

as an independent cause. And no doubt Descartes had in his own

way taken up this quest again. But it remained a bold ambition,

the problematical ideal of a school of philosophers. Actual results

of a kind to support the belief in the existence of a complete chain

of physical causation hardly existed before Newton.

. . .

The differential law is the only form which completely satisfies the

modern physicist’s demand for causality. The clear conception of

the differential law is one of Newton’s greatest intellectual achieve-

ments. It was not merely this conception that was needed but also

a mathematical formalism, which existed in a rudimentary form

but needed to acquire a systematic form. Newton found this also

in the differential and the integral calculus. (Einstein, 2009, 28-30)

Einstein distinguishes Newton’s achievement of a mathematical formalism
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of the ‘differential law’ in the Principia from the mathematics of Newton’s

differential and integral calculus. We will take this distinction up later in the

paper. Nowadays, though—for good reason we might add—this distinction is

less emphasized, and we more freely associate Newton’s Laws of Motion and

Universal Law of Gravitation with their expressions in terms of differential

and integral calculus. Using calculus has the advantage of making it easier to

analytically calculate the effect of all forces on motion.

Modern scientists echo this sense of awe at Newton’s insight. But, modern

viewpoints risk oversimplifying Newton’s thinking.

Steven Strogatz, who studied at Trinity College—Newton’s own college—

emphasizes how calculus and Newton’s laws of motion unify seemingly dis-

parate phenomena:

Isaac Newton was the first to glimpse this secret of the universe. He

found that the orbits of the planets, the rhythm of the tides, and

the trajectories of cannonballs could all be described, explained,

and predicted by a small set of differential equations. . . . Every

inanimate thing in the universe bends to the rule of differential

equations. I bet this is what [Richard] Feynman meant when he

said that calculus is the language God talks. If anything deserves

to be called the secret of the universe, calculus is it. (Strogatz,

2019)

Strogatz remarks highlight Newton’s impact on our own everyday under-

standing of physical laws: the differential, calculus-based framework Newton

created fundamentally underlies our modern conception of the physical world.
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His remarks also present an opportunity to make an important distinction.

Strogatz acknowledges that there are three distinct components to under-

standing: description, explanation, and prediction. In his Principia, Newton

presents his Universal Law of Gravitation through the lens of description and

prediction in the sense that he describes the gravitation as a force between

two masses and he uses that description to predict the motion of the cosmos.

However, while Strogatz may be interpreted as saying that differential equa-

tions provide causal explanations for the world, Newton did not hypothesize

any such causes.

As we shall see, Newton articulated his laws in a geometric manner, de-

scribing the geometry of the motion of the cosmos, building on a tradition

as old as Euclid himself. Calculus is not where Newton’s intuition started.

Newton began with geometry. In fact, we have a lecture, Richard Feynman

gave on Newton’s Principia where he gave a modern presentation of Newton’s

original demonstration of planetary motion. In his exposition in that lecture,

Feynman says the following.

In the beginning of our science—that is, in the time of Newton—

the geometrical method of analysis in the historical tradition of

Euclid was very much the way to do things. And as a matter

of fact, Newton’s Principia is written in a practically completely

geometrical way—all the calculus things being done by making

geometric diagrams. We do it now by writing analytic symbols on

the blackboard, but for your entertainment and interest I want you

to ride in a buggy for its elegance, instead of in a fancy automobile.
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(Feynman qtd. in Goodstein and Goodstein, 1997)

While Einstein had highlighted the conceptual shift Newton achieved, Feyn-

man illustrates how Newton initially expressed these concepts in a purely Eu-

clidean style. Feynman’s commentary also underscores the intellectual bridge

between Greek geometry and Newton’s laws of motion. Let us examine Feyn-

man’s explanation of Kepler’s laws under Newtonian forces, presented in geo-

metric form.

We have to learn dynamics, we have to put them together. So now

we have to explain what dynamics is all about.

. . .

What Newton means by this is this: that if this is the Sun, for

instance, the center of the attraction, and at a given instant a

particle were to, say, be here, and let me suppose that it moves

to another point, from A to B in a certain interval of time. Then,

[if] there were no forces acting toward the Sun, this particle would

continue in the same direction and go exactly the same distance to

a point c. But during this motion there’s an impulse toward the

Sun.

. . .

And, therefore, the impulse is in the direction of the Sun, and this

might represent the change in motion. That means that instead

of this moving to here, it moves to a new point, which is C, which

is different than c, because the ultimate motion is this motion
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Figure 1: The figure Feynman is referencing in his description of Newton’s
dynamics. This is the full page from the first edition of Principia held in the
Boston Public Library and including the crucial figure.
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compounded from the original plus the additional impulse given

toward the center of the Sun. So that the ultimate motion is along

the line BC, and at the end of the second interval of moment of

time the particle will be at C. (Feynman qtd. in Goodstein and

Goodstein, 1997)

We see in Figure 1 that the change in motion (the differential step) is

encoded in Euclidean geometry as the line segments cC, dD, eE, and fF .

The proposition this diagram is in service immediately recalls Kepler’s Second

Law of Planetary Motion, which states that a line segment joining a planet and

the Sun sweeps out equal areas during equal intervals of time. The proposition

reads:

Areas quas corpora in gyros acta radiis ad immobile centrum vir-

ium ductis describunt, & in planis immobilibus consistere, & esse

temporibus proportionales.

The areas, which revolving bodies describe by radii drawn to an

immoveable centre of force, do lie in the same immoveable planes,

and are proportional to the times in which they are described.

Newton (1729)

The importance of Newton’s reformulation of Kepler’s Second Law in terms

of his Laws of Motion in Figure 1 is that Newton gives an explanation for why

Kepler’s Second Law holds. He gives a geometric construction where Kepler’s

Second Law holds. Furthermore, the geometry represents a differential law,
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where the line segments cC, dD, eE, and fF represent a force towards an im-

movable point. The use of geometry to describe orbits was not new: Kepler,

himself, first tried to describe orbits as spheres repeatedly inscribed and cir-

cumscribed in platonic solids, and then in his First Law of Planetary Motion

as an ellipse American Physical Society (2014). Rather what was new was

that Newton encoded in his geometric diagram the differential step—a change

in the trajectory of motion–and identified a specific cause of the change in the

step—a force towards an immovable center.

There are two sorts of intuition Newton exhibits in this example. There

is his intuition in relation to constructing the geometry. Then, there is his

intuition in relation to the differential law encoded in the geometry. We will

consider both of these sorts of intuition throughout this paper.

Newton, early on in his studies at Trinity College, was well-trained in

Euclid. One of his teachers was Isaac Barrow, who was author of the standard

textbook on Euclid at the time (Swetz and Katz, 2011). Newton certainly

received excellent instruction in Euclid at least through attendance of Barrow’s

lectures. We know that Newton received a fellowship at Trinity College and

the Lucasian professorship due to Barrow’s aid (Finegold, 1993). Barrow in a

preface to a publication of his own lectures on geometry, writes that he “thanks

Newton—‘a Man of great Learning and Sagacity’—for helping to revise the

text” (Thomas, 2018, p. 71).

In giving the original, Euclidean presentation of Newtonian physics, Feyn-

man echoes what Bertrand Russell wrote about the Principia in his The His-

tory of Western Philosophy: namely, that “The form of Newton’s Principia,
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in spite of its admittedly empirical material, is entirely dominated by Euclid.”

Though Newton’s Universal Law of Gravitation was stated and presented

using Euclidean geometry, geometry does not wholly capture Newton’s ideas.

Geometry is static in the sense that, while geometry has clear notions of length,

geometry does not have clear notions of time. The Greeks describe the motion

of a planet by the geometry of the trajectory they follow—the trajectory is

static. Newton describes the motion of the planet by the forces that are acting

on it over time—the trajectory is given dynamically. Russell writes:

Greek astronomy was geometrical, not dynamic. The ancient thought

of the motions of the heavenly bodies as uniform and circular, or

compounded of circular motions. They had not the conception of

force. There were spheres which moved as a whole, and on which

the various heavenly bodies were fixed. With Newton and gravi-

tation a new point of view, less geometrical, was introduced. It is

curious to observe that there is a reversion to the geometrical point

of view in Einstein’s General Theory of Relativity, from which the

conception of the force, in the Newtonian sense, has been banished

(Russell, 1945, p. 216)

We now begin to see why, given that the Greek geometers equipped with the

same tools of geometry as Newton, did not discover the Universal Law of Grav-

itation for themselves. Newton, uniquely, had the concept for the ‘differential

law,’ expressing the world as dynamic and not static. Newton’s Principia is

similar in form to Greek geometry in form in the sense that both the Principia



10

and Greek geometry use axiomatic, deductive reasoning, outlining definitions

and propositions. But is is dissimilar in terms of dynamism.

Dynamic, as we see from the discussions above, means that there are forces

at play. The concept of force is inherently tied to the concept of the differen-

tial; the application of a force imparts an impulse which causes a differential, a

change in motion. Euclidean geometry, as Newton illustrated in the Principia

and as we walked through following Feynman’s lead (Figure 1), is capable of

encoding dynamic forces within its method. Though dynamism is available

within the mathematics of geometry created by the Greeks, dynamism is not

used in geometry as practiced by the Greeks. Something outside of the math-

ematics, perhaps as we will contend a philosophical element related to the

Aristotelian conception of causation, precludes dynamism from geometry as

practiced by the Greeks.

In relation to our goal of understanding Newton’s own intuition, we will

take a non-digression digression to establish to some degree Newton’s familiar-

ity with Aristotle. Regarding Newton’s education in Greek philosophy, James

Gleick recounts in his biography, Isaac Newton, the following.

The curriculum [at the University of Cambridge] had grown stag-

nant. It followed the scholastic tradition laid down in the univer-

sity’s medieval beginnings ... The single authority in all the realms

of secular knowledge was Aristotle—doctor’s son, student of Plato,

and collector of books. Logic, ethics, and rhetoric were all his, and

so—to the extent they were studied at all—were cosmology and

mechanics. ... Supplemented by ancient poets and medieval di-
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vines, it was a complete education, which scarcely changed from

generation to generation. Newton began by reading closely, but

not finishing, the Organon and the Nicomachenan Ethics. (Gleick,

2004, p. 22)

Gleick discerned Newton’s close reading of the Organon and the Nico-

machenan Ethics from Newton’s ‘Trinity College Notebook’, which he kept as

an undergraduate, among others of Newton’s notebooks, books, and papers.

Newton, as a boy, had been taught Latin, Hebrew, and Greek (Gleick, 2004,

p. 13). In his notes on Aristotle for his undergraduate studies, Newton made

evident his facility of Latin and Greek.

On folios 3r-10v Newton made notes based on Aristotle’s Organon

and Porphyry’s Isagoge. These are probably the earliest in the

notebook [Quæstiones quædam Philosophiæ]. In a youthful hand,

they are from a four-volume edition of Aristotle’s works entitled

Aristotelis Opera omnia, quae extant, Graece et Latine, third edi-

tion (Paris, 1654), which was under the general editorship of Guil-

laume Du Val. There is a copy of this work in the Cambridge

University Library and two in the British Library.

. . .

Although the notes are in Greek, Newton maintained running head-

ings in Latin in the margins.

. . .
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Of Aristotle’s complete list of categories, Newton covers substance,

quantity, relation, quality, and passion. (McGuire and Tamny,

1983, p. 15)

Here is what Aristotle has to say in his category of quantities that Newton

took notes on. We see in the Aristotelian conception of the continuity of

space and time some similarities but also stark differences to the Newtonian

differential and integral calculus conception of continuity of space and time.

Space and time also belong to this class of quantities. Time, past,

present, and future, forms a continuous whole. Space, likewise, is a

continuous quantity; for the parts of a solid occupy a certain space,

and these have a common boundary; it follows that the parts of

space also, which are occupied by the parts of the solid, have the

same common boundary as the parts of the solid. Thus, not only

time, but space also, is a continuous quantity, for its parts have a

common boundary. Aristotle, 1.1.6

Modern calculus and physics have at its heart concepts of continuity. In

physics, it is very sensible to say that we integrate a force over continuous time

to calculate the impulse or that we integrate a force over continuous distance

to calculate the work. In Newton’s publication of his physics in the Principia,

he would write that “Absolute, true, and mathematical time, of itself, and

from its own nature, flows equably without relation to anything external.”

However, as we have reviewed, Newton’s description of force in the geo-

metrical diagrams he presented (Figure 1) time has been discretized into steps,
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whereby the gravitational force can act in discrete impulses. There is an appar-

ent contradiction where Newton appears to suggest that time is both discrete

and continuous. Of course, Newton’s resolution to this question is to say that

the geometrical picture is an approximation of reality and, in taking smaller

and smaller time steps, we more closely reach reality.

As Einstein remarked, it is Newton’s “clear conception of the differential

law”, precisely describing the geometry of the differential step and solving

cosmological motion using this geometry, that was such an important achieve-

ment. We might ask: Why did it take more than two millennia from when

Euclid described his geometry to when Newton used it to demonstrate the

physics of the cosmos? Given that Aristotle also viewed time as a continuous

quantity, we might expect that Aristotelians would inquire as to the mechanics

of how to describe nature transitioning from one moment in time to the next.

In brief, the primary reason is that while Newton in his mechanics, is inter-

ested in the past causes the present, Aristotle in his physics and metaphysics

is interested in how the past and the future causes the present. Aristotelians

did not believe that physics could be described in terms of mechanics, so they

would not embark on Newton’s program and the study of the cosmos from

Aristotle to Newton was firmly Aristotelian.

We will describe why Aristotle believed this by considering his view of

causation and then we will consider the Greek Atomists, who were the “great

materialists of antiquity” (Burnet, 1908, p. 389).

Aristotle introduced four causes to understand why things are the way they

are. The material cause identifies the matter something is made from—like
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bronze for a statue. The formal cause is the form or essence that makes it

what it is. The efficient cause is the agent or process that brings it about, like

a sculptor carving marble. Finally, the final cause is the purpose or end—the

reason why something exists or occurs.

Among these, Aristotle placed particular emphasis on the final cause. He

believed that natural processes tend toward certain ends. Living things, for

example, act with purpose. Aristotle notes that “the living creature is moved

by intellect, imagination, purpose, wish, and appetite. And all these are re-

ducible to mind and desire” (Aristotle, 350 B.C.E, part 6). Russell illustrates

this with a dog seizing a bone: the dog’s action is guided by its desire for the

bone and the satisfaction it brings, not just by mechanical impulses.

For Aristotle, the final cause had priority in explaining phenomena. Know-

ing how something happened—its material and efficient causes—is incomplete

without understanding why it happened—its final cause. The final cause gives

actions context and meaning.

From an Aristotelian perspective, understanding celestial motion cannot

rely on mechanics alone. Without acknowledging a guiding final cause, there

would be little reason for an Aristotelian to embark on the purely mechanistic

analysis that characterized Newton’s approach. Given the dominance of Aris-

totelian thinking prior to Newton, it is perhaps unsurprising that, given few

people would find reason to embark on a purely mechanistic analysis, no one

would succeed in a mechanical characterization of the motion of the planets

as Newton does.

This view was not unfamiliar to Newton. Let us return to Isaac Barrow.
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During the early 1650s Barrow read widely. He was well versed in

Aristotle and retained a deep respect for Aristotle throughout his

career, describing him as the ‘unchallenged Prince of all who have

ever been or ever will be philosophers’ (N IX 161). During this

period, Barrow also engaged with René Descartes in depth. This

early enthusiasm is displayed in his 1652 Cartesiana Hypothesis De

Materia et Motu Haud Satisfacit Praecipuis Naturae Phaenome-

nis. The essay opens by discussing the post-Aristotelian neglect of

natural philosophy, and goes on to praise Descartes—that best and

most ingenious (ingeniosissimus) philosopher—and his natural phi-

losophy in high terms (N IX, 79–81). Despite this praise, Barrow

does not accept all aspects of his work. . . . Barrow is wary of the

materialist connotations of Descartes’ system, writing that it ex-

hibits no vital spirit (Spiritum quendam vitalem) (N IX, 82–104).

. . . Barrow later grew more critical of Descartes, likely because Bar-

row also perceived Cartesianism to carry the risk of materialism

and atheism. (Thomas, 2018, p. 69)

Barrow’s concern with the ‘vital spirit’ is in line with Aristotle’s concern

for final causes. The ‘vital spirit’ that Barrow desires is plainly the very same

‘living creature’s view’ that Einstein describes as the subject of Newton’s quest

to excise.

That is not to say, however, the mechanical view of physics, which does not

attribute motion to soul, will, or desires, is intuitive. As Einstein recites, the

view that “all material events should be traced back to a strictly regular series
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of movements” has been present since the time of the Greeks. The Greeks who

espoused this view were called Atomists. Let us more fully consider how an

Atomist would explain motion. Interpreting for us how the Greek Atomists

Leucippus and Democritus would answer a question on what the cause of

motion is, Cyrus Bailey writes the following.

Leucippus seems to have asserted in a rather half-hearted manner

that ‘necessity’ was the motive cause, and that by his assertion

he intended not, as previous thinkers have done, to introduce an

inexplicable external force to explain what could not otherwise be

shown to follow from his fundamental principles, but rather to

adumbrate the idea familiar to us as that of ‘natural law’. The

ultimate controlling principle is that everything follows the laws

of its own being. This notion which Leucippus applied with some

hesitation to explain the original motion of the atoms, Democritus

now confidently asserts with a much wider, indeed, a universal

application. ‘Necessity’ orders all things, indeed by necessity the

whole course of things is foreordained from all eternity; the whole

history of the universe is but the inevitable outcome, step by step,

of its original and eternal constitution. (Bailey, 1964, p. 121)

Democritus’s conception of ‘necessity’ as that of the “step by step” appli-

cation of “its [an atom’s] original and eternal constitution” is akin to Newton’s

differential law, where at each step, the forces of natural law are applied. The

comparison in intuition between the Atomists and Newton is striking because

of their commonality across great stretches of history. However, nearly by
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definition, these intuitions that reflect similarities in views between the Atom-

ists and Newton cannot serve to distinguish what makes Newton’s intuition

special. The precedent for that intuition makes Newton’s possession of that

intuition less exceptional.

Having given discussion of the Atomists whom we will return to later, let

us tackle Aristotle’s Metaphysics. This discussion will be somewhat lengthy,

but is in service of establishing what intuitions Aristotle and thus Ptolemy and

the Catholic Church and the Anglican Church and thus Isaac Barrow (who

was Anglican and an Aristotelian) held, and what intuitions Newton would

have to struggle against.

We first pick up on Aristotle’s Metaphysics with his conception of motion

and we will accept, as he explains, that time is infinite. Proceeding from that

premise, he writes.

It is impossible that movement should either have come into being

or cease to be (for it must always have existed), or that time should.

For there could not be a before and an after if time did not exist.

Movement also is continuous, then, in the sense in which time is;

for time is either the same thing as movement or an attribute of

movement. And there is no continuous movement except move-

ment in place, and of this only that which is circular is continuous.

(Aristotle, 350 B.C.E., XII.6)

Aristotle’s intuition is that “there is no continuous movement except move-

ment in place, and of this only that which is circular is continuous”. We say

that it is his intuition because in Metaphysics he gives no explanation for both
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claims. We can try to explore his intuition, though, and guess at why he might

hold it and where it does not match up with the Newtonian and Euclidean

view of space and geometry.

For the first claim that “there is no continuous movement except movement

in place”, we can reach the same claim that Aristotle intuits if we are to

assume that space is finite in extent, though we might express it differently.

We might say that ‘continuous movement in a finite space is bounded,’ which

is certainly true because it is finite. This explanation of the first claim is not

altogether satisfying, though perhaps its simplicity is why Aristotle provided

no explanation other than his bare statement.

His second claim that “of [movement in place] only that which is circular is

continuous” is also a bit shocking. As an arbitrary example, going around in

an ellipse would be continuous movement in place. We might interpret him as

saying instead that the only movement in place is a cycle, e.g. going around

and returning back to the exact same place. This seems—intuitively—to be

quite reasonable: how can you go around in the same place without at some

point repeating a pattern? Yet, Edward Lorenz with his strange attractor

showed that it is in fact possible to go around and around in the sample place

without repeating a pattern (Figure 2).

In his work On the Heavens, Aristotle provides a more complete argument.

This circular motion is necessarily primary. For the perfect is nat-

urally prior to the imperfect, and the circle is a perfect thing. This

cannot be said of any straight line:-not of an infinite line; for, if it

were perfect, it would have a limit and an end: nor of any finite
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Figure 2: Reproduced from Wikipedia contributors (n.d.)

line; for in every case there is something beyond it, since any finite

line can be extended. And so, since the prior movement belongs to

the body which naturally prior, and circular movement is prior to

straight, and movement in a straight line belongs to simple bodies-

fire moving straight upward and earthy bodies straight downward

towards the centre-since this is so, it follows that circular movement

also must be the movement of some simple body.

This argument in its appeal to the perfection of the circle has a Platonic

nature and in its absence of an appeal to continuity, which has precise, modern,

mathematical definitions, is much more resistant to analysis. We know—

from Newton’s demonstration—that the Aristotelian conception of the circular

movement as primary is incorrect in favor of the Newtonian conception of linear

movement in an infinite line as primary.

As an observation, Euclid’s first postulate is that “A straight line can

be drawn between any two points”, his second postulate is that “A straight

line can be extended indefinitely in a straight line” and his third postulate is

that “A circle can be drawn with any center and radius.” The first postulate
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assuredly must come prior to the second postulate, because the infinite line is

defined in terms of the finite. The first postulate likely must come prior to the

third because radius invokes the concept of distance which seems to require the

concept of a finite line. This is a reversal of Aristotle’s ordering! We see again

that the intuitions of Newton and Aristotle seem to be opposing in some sense

and this is a fundamental question indeed. Newton embodies this in his First

Law of Motion. Again, however, we see that Newton’s intuition is predated

by millennia by Euclid. Connecting Newton’s intuition temporally mirrors the

connection we continually make between Newton and the Atomists, indicating

these are strong intuitions, indeed. Admittedly, the connection to Euclid is,

though interesting, arguably tenuous, so we also note that Galileo formulated

a nearly equivalent inertial law, which was later supported philosophically by

Descartes and empirically by Pierre Gassendi, before Newton’s time Drake

(1964).

Setting the primacy (or lack thereof) of lines and circles considerations

aside, supposing that, as Aristotle suggests, circles have primacy, let us con-

tinue with his argument.

The final cause, then, produces motion as being loved, but all other

things move by being moved. Now if something is moved it is ca-

pable of being otherwise than as it is. Therefore if its actuality is

the primary form of spatial motion, then in so far as it is subject

to change, in this respect it is capable of being otherwise,-in place,

even if not in substance. But since there is something which moves

while itself unmoved, existing actually, this can in no way be oth-
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erwise than as it is. For motion in space is the first of the kinds of

change, and motion in a circle the first kind of spatial motion; and

this the first mover produces. (Aristotle, 350 B.C.E., XII)

In Aristotle’s view, stars and planets move in circles because they love the

the first mover. The first mover is the final cause of the movement of stars

and planets. Intuitively, extending the previous analogy from Russell, the first

mover is like the bone and the stars and planets are like a dog desiring the

bone. Aristotle continues on to describe how the best of Greek astronomers

and mathematicians, Eudoxus and Callippus, describe the movement of stars

and planets in terms of spheres. He then observes, preempting Ptolemy, the

necessity for epicycles.

It is necessary, if all the spheres combined are to explain the ob-

served facts, that for each of the planets there should be other

spheres (one fewer than those hitherto assigned) which counteract

those already mentioned and bring back to the same position the

outermost sphere of the star which in each case is situated below

the star in question; for only thus can all the forces at work pro-

duce the observed motion of the planets. (Aristotle, 350 B.C.E.,

XII)

We see contained within the above passage similar ideas of Newton in a

sense. We might selectively quote Aristotle to say that ‘all the forces at work

produce the observed motion of the planets’. It would be surprising to see
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Aristotle directly mentioning forces, so consulting a different translation, we

see that force is not mentioned—rather motion is considered.

καθ᾿ ἕκαστον τῶν πλανωμένων ἑτέρας σφαίρας μιᾷ ἐλάττονας εἶ-

ναι τὰς ἀνελιττούσας καὶ εἰς τὸ αὐτὸ ἀποκαθιστάσας τῇ θέσει τὴν

πρώτην σφαῖραν ἀεὶ τοῦ ὑποκάτω τεταγμένου ἄστρου: οὕτω γὰρ

μόνως ἐνδέχεται τὴν τῶν πλανήτων φορὰν ἅπαντα ποιεῖσθαι.

there must be for each of the other planets other spheres, one less

in number than those already mentioned, which counteract these

and restore to the same position the first sphere of the star which

in each case is next in order below. (Aristotle, 1924, XII)

A more faithful reading of Aristotle would be that Aristotle says that it

is the circular motion which in combination produces the observed motion of

the planets—motion itself in combination, not forces.

We take from this several points.

The first is that Newton’s intuitions achieved a total victory.It is now so

intuitive that forces are the cause of motion in the cosmos that we naturally

slip into talk of forces when discussing the cause of cosmological motion. The

former translation mentioning forces was taken from William David Ross—

who is described as the “the most influential Aristotelians of the twentieth

century. . . . [His translations] are still held in high regard” Skelton (2022).

The second is that the intuitions of Aristotle as rendered in his Metaphysics

were sufficiently close to to Newton’s intuitions that translating Aristotle as

saying “all the forces at work produce the observed motion of the planets” is



23

in fact a good translation. The practical distance in their intuitions is perhaps

smaller than commonly described. The third is that Aristotle’s intuitions

were so nearly correct in predicting the motion of the planets. If Aristotle

or Ptolemy had the data and the computational faculties, they could have,

similarly to Newton, precisely approximated the motion of the planets and

the stars, because epicycles can express the (precisely) Fourier-approximated

motion of the planets and the stars Acosta et al. (2019).

In totality, we have described how closely aligned Newton’s and Aristotle’s

intuitions were, except that while Newton approximated the curve of planets

orbit with a line, Aristotle approximated the curve of planets with circles. In

some sense, the difference in physical intuition between Aristotle and Newton

is in the primacy of the circle or the line. In the Newtonian conception of space,

the infinite line is the continuous motion. In the Aristotelian conception of

space, the circle is the continuous motion.

Newtonian geometry, as we have discussed, is inherently Euclidean geom-

etry. Euclidean geometry came after Aristotle’s work and dominated subse-

quently to the time of Newton and then was carried by Newton’s system up

until Einstein. Einstein, in fact, showed that space in the universe is non-

Euclidean. Einstein writes:

We have nevertheless to admit today that our position in regard to

the fundamental laws of this motion resembles that of astronomers

before Newton in regard to the motions of the planets.

In Einstein’s Theory of general relativity, it is spacetime itself which is

warped and it is the deformation in spacetime due to mass that gives the
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Figure 3: NASA’s depiction of the ‘straight lines’ through spacetime, which
are called geodesics, in Physics of the Cosmos of the Cosmos Program (2024).

phenomenon of gravity. The Law of Universal Gravitation existing in Eu-

clidean geometry, as given by Newton, is a (very good) approximation of the

warping of spacetime for our solar system and beyond, but an approximation

nonetheless. In Euclidean geometry, continuous motion can be though of, in

the Newtonian sense, to be motion in a straight line. For Newton, gravity is

a force operating within this geometry.

Einstein’s description of spacetime is different. The force of gravity under

general relativity is not a force acting in Euclidean geometry. Rather, gravity

is represented by the warping of spacetime in a non-Euclidean geometry. Due

to warping, a continuous motion through spacetime can become a circular

orbit. For example, the moon traveling through a ‘straight line’ through the

non-Euclidean space described by Einstein’s general relativity appears to us

to be the moon traveling in an orbit around the Earth.

It is quite remarkable the Aristotle intuitions on motion have survived New-

ton’s revolution in mechanics and made a comeback with Einstein’s general

relativity. Though the relationship between Aristotle’s thought and general
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relativity is generally outside our considerations here, we simply use the occa-

sion to note that for some of the trickiest intuitions we’ve considered in this

paper–whether continuous motion is fundamentally that of a circle or a line–

there hasn’t been a clear, correct answer. It’s not clear what it would mean

for one intuition to be correct or not. Newton’s is surely more useful for the

industrial and scientific revolutions, and Newton’s is the foundation of physics

to date, but Einstein’s is our most advanced theory of physics. That is to say,

it is not clear that we can attribute any single intuition as being Newton’s

exceptional intuition.

Einstein points us to ‘clear conception of the differential law’ as one of

Newton’s greatest achievements. When considering what is the most modern

and most precise theory of the physics of the planets and the stars, it is

not Newton’s Universal Law of Gravitation or Newton’s demonstrations in

Euclidean geometry that persists. Rather it is Newton’s ‘clear conception

of the differential law’ that persists, embodied in the differential equations

that govern general relativity. It is not even Newton’s notation—Gottfried

Wilhelm Leibniz’s notation has become more popular—which has persisted.

Rather it is Newton’s ‘clear conception of the differential law’. Einstein could

have equivalently said that is Newton’s clear intuitive grasp of the differential

law, which is one of Newton’s greatest intellectual achievements.

Feynman writes, in the same lecture on Newton’s Euclidean methods for

describing gravitation, the following.

It is not easy to use the geometrical method to discover things. It

is very difficult, but the elegance of the demonstrations after the
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discoveries are made is really very great. The power of the analytic

method is that it is much easier to discover things than to prove

things.

Feynman is certainly a proponent of a visual method of demonstration,

having formulated his eponymous diagram. Feynman’s characterization of the

geometrical versus the analytic methods mirrors the structure and import of

the three books of Newton’s Principia. In the following discussion, facts about

the contents and contemporary reception of the Principia in the following

discussion are taken from the Smith and Iliffe (2024) entry in The Stanford

Encyclopedia of Philosophy.

The opening sections of the Principia give definitions and Newton’s Laws

of Motion. The first book of Principia is, as Russell noted and we’ve seen

in Feynman’s exposition, is Euclidean in form and gives his presentation of

centripetal motion—notably including, the differential and his proofs relating

the inverse square laws to Kepler’s laws. The second book of Principia aims

to refute Descartes and Leibniz’s view of literal fluid vortices as maintaining

orbits. We say it aims to refute because it is incorrect or otherwise unsuccessful

across multiple dimensions (though the Newton assuredly arrives at the correct

conclusion that gravity is not due to the fluid vortices Descartes and Leibniz

describe). The third book of Principia derives his Law of Universal Gravitation

and then goes on to calculate various astronomical quantities.

We will concern ourselves with the first and third book of Principia for

those are the ones with lasting import. The first book, in its Euclidean form,

yields a geometrical picture of the differential characterization of Kepler’s Sec-
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ond Law. The figure shows how motion is composed of differential steps. We

recall that this picture is the same as the one Feynman described for us in

Figure 1.

It is of this geometrical picture in the first book, among others, that a re-

viewer gave the following remarks, which a modern reader might find puzzling.

The work of M. Newton is a mechanics, the most perfect that one

could imagine, as it is not possible to make demonstrations more

precise or more exact than those he gives in the first two books. . . .

But one has to confess that one cannot regard these demonstrations

otherwise than as only mechanical; indeed the author recognizes

himself at the end of page four and the beginning of page five that

he has not considered their Principles as a Physicist, but as a mere

Geometer. . . .

In order to make an opus as perfect as possible, M. Newton has

only to give us a Physics as exact as his Mechanics. He will give it

when he substitutes true motions for those that he has supposed

(A review of Principia in the Journal des Sçavants quoted by Smith

and Iliffe (2024)).

First, we see that the reviewer confirms previous assertions that the ge-

ometric demonstration is most elegant (this is not the puzzling part). The

reviewer effusively remarks that “it is not possible to make demonstrations

more perfect or more exact.” The puzzling part is that, second, we notice that

the reviewer suggests that Mechanics is separate from Physics and that New-

ton, having posed his Laws of Motion, “has not considered their Principles as
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a Physicist, but as a mere Geometer.” By transitivity, the reviewer would call

entire swathes of modern physics, geometry.

A modern physics textbook, contains passages like the following from Uni-

versity Physics, considering mechanics as a part of physics.

Mechanics is the study of the relationships among force, matter,

and motion. In this chapter and the next we’ll study kinematics,

the part of mechanics that enables us to describe motion. Later

we’ll study dynamics, which helps us understand why objects move

in different ways. (Young and Freedman, 2019, p. 22)

A modern physics textbook like University Physics will have headings such

as “Mechanics” and “Thermodynamics” and “Newton’s Laws of Motion” and

“Fluid Mechanics” and “Quantum Mechanics”. All of these would have been

describe the reviewer—and likely many others in his time—would have de-

scribed as not physics.

Newton’s intuition was that mechanics is, in fact, physics. Mechanics, in

Newton’s conception as it is today, is the study of the application of forces

and the motion produced by forces. Yet, it was not obvious—or, perhaps we

should say, intuitive—in Newton’s time that the cause of motion is forces. It

was not intuitive that describing the mechanics of a system, the differential law

by which the system evolves, amounts to describing the physics of a system.

In Aristotle’s conception of his four causes, he had the efficient cause

(‘Where does change (or motion) come from?’) and the final cause (‘What

is its good?’). He could admit that the efficient cause—the forces—could be
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the cause in some sense, but that the final cause is the ‘real cause’. For Aris-

totle, the explanatorily prior cause was the final cause and the motion of the

astronomical objects was towards the final cause. In Aristotle’s consideration

of the stars there was still a divine character—or at least a metaphysically

prior character—that by definition freed the heavens from the efficient cause

and placed the heavens squarely in the dominion of the final cause. Physics

had a vivacious quality and was infused by desire, soul, and meaning.

Newton took a mechanistic view. As Einstein described, Newton formu-

lated his ‘differential law’ and mechanistically explained the cosmos. Newton’s

intuition was to treat the sun, stars, planets, and comets all as matter with

mass and to write his differential laws of motion and gravitation, which gov-

erned mass. His intuition, therefore, was not only to conceive the mechanical

view, but also to apply the mechanical view to the cosmos as the immediate

cause. In doing so, he stripped out notions of final causes in astronomical

considerations, and in doing so clarified the matter greatly.

The mechanical intuition Newton demonstrated, continuing the spirit of

the Atomists, would come to drive modern physics. However, in relation to

Newton’s intuition, just as he wasn’t unique in adopting the mechanical view,

he also wasn’t unique in applying the mechanical view to the cosmos for Atom-

ists did the same. Anaxagoras was found guilty of a crime for teaching the

mechanical view of the cosmos (Russell, 1945, p. 62). Anaxagoras taught, ac-

cording to philosopher Jonathan Barnes in his book Early Greek Philosophy,

the following:

He said that the sun is a fiery lump, larger than the Peloponnese
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(but some ascribe this to Tantalus), and that the moon is inhabited

and also contains hills and ravines. The uniform stuffs are first

principles; for just as gold is compounded from gold-dust, so the

universe is combined from small uniform bodies. (Barnes, 1987, p.

237)

Anaxagoras’ views were widely circulated, in large part through Aristotle’s

considerations of Anaxagoras in his view, though it is difficult to say with

certainty what Newton knew of it.

Regardless, though, the important consequence of considering Anaxago-

ras’s views and the view of other Atomists is that we can confidently say that

Newton’s mechanical view of the cosmos was not unique. There were others

with the same intuition.

This is sensible, because it is difficult to have firm intuitions about the cos-

mos, which Newton and the Greeks can only observe but have no direct or clear

experience of. Many multitudes of intuitions can be somewhat reasonable.

For Newton, at the heart of his mechanical intuition was a geometric

picture—a Euclidean picture. The reviewer was correct in that he geomet-

ric picture was, in a sense, mechanical for it was the repeated application of

axiomatic, deductive logic. The picture was confirmed through calculation by

the agreement it produced with known patterns of motion in the stars. New-

ton’s ability to calculate pervades throughout his endeavors, particularly his

analytic calculations in Book 3 of Principia to calculate all sorts of astronom-

ical phenomena.

In a letter to Richard Bentley who would be in charge of the second edition
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of Principia and who gave a lecture on A Confutation of Atheism the same

year of the letter, Newton writes the following.

When I wrote my treatise about our Systeme [Principia] I had an

eye upon such Principles as might work with considering men for

the Beleife of a Deity & nothing can rejoyce me more then to find it

usefull for that purpose. But if I have done ye publick any service

this way ’tis due do nothing but industry & a patient thought.

(Newton, 1967, p. 9)

It is quite remarkable that Newton would attribute the contributions of

the Principia to “nothing but industry & a patient thought.” There is surely

an element of modesty to his statement, especially considering the theological

backdrop of the letter, but there likely is an element of truth as well. It is hard

to see how intricate work like this (Figure 4) could be the product of anything

but patient thought.

His patient thought extends beyond the geometric. We can see from his

notebooks patient thought regarding the formation of his Laws of Motion. He

goes on and on enumerating axiomatic statements until he arrives at his Three

Laws of Motion we see in Principia (Figure 5).

For example, here are two of his axioms, numbered 103 and 104.

103 By the same reason alsoe If two bodys rest or bee equivelox:

then as the body (a) is to the body (b) soe must the power or

efficacy vigor strength or virtue of the cause which begets new

velocity in (a) bee to the power virtue or efficacy of the cause
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Figure 4: Pages from the first edition of Principia held in the Boston Public
Library.

Figure 5: Page 12v of Newton’s Waste Book (MS Add. 4004) Newton (c. 1612–
c. 1690)
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which begets the = same quantity of velocity in b , soe that a & b

bee still equivelox.

104 Hence it appeares how & why amongst bodys moved some

require a more potent or efficacious cause others a lesse to hinder

or helpe their velocity. And the power of this cause is usually called

force. And as this cause useth or applyeth its power or force to

hinder or change the perseverance of bodys in theire state, it is said

to Indeavour to change their perseverance. (Newton, 1664–1685,

p. 12v)

About Axiom 103, Gleick writes: we see how “Writing in English, he was

constrained by the language at hand. At times his frustration was palpable in

the stream of words . . . Power efficacy vigor strength virture—something was

missing.” Furthermore in Axiom 104, we see a hesitation in language when

Newton writes that “the power of this cause is usually [empahsis added] called

force.” Of course, we call it force today, but a cloud over language hung over

Newton when he crafted a wholly new system of and language for physics.

Newton would continue on to Axiom 120 on the following page.

It is clear from the (at minimum) 120 axioms that would eventually be

condensed down to his Three Laws of Motion that there wasn’t a flash of

insight that immediately showed him an answer. There was certainly some

insight, and then continued patient application of thought.

What was special about Newton’s intuition then? We have seen repeatedly

our considerations how Newton’s intuitions were connected to those of others

including the Greek thinkers. We have seen how Newton’s intuitions have been
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powerful and similar, at least to a few great persons of history, in that sense

his intuitions haven’t been wholly unique.

His distinguished power came from, as he himself suggests, patient thought.

Newton worked many times in isolation—isolated at his farm during the plague

and removed to Cambridge from London, away from the day-to-day and the

exchanges at the Royal Society.

His powers of intuition are realized not from any single axiom or demon-

stration or experience, but rather the patient consideration and improvement

of each one. His powers of intuition are not the starting point from which

straightforward reasoning follows. Rather, his powers of intuition are realized

at each step of of his reasoning. In this sense, he has a powerful meta-intuition.

Of course, it helps that in his patient thought, he applies this powerful

meta-intuition many times.

Locke in his An Essay Concerning Human Understanding uses Newton to

illustrate demonstrative knowledge:

Nobody, I think, can deny, that Mr. Newton certainly knows any

proposition that he now at any time reads in his book [Principia]

to be true; though he has not in actual view that admirable chain

of intermediate ideas whereby he at first discovered it to be true.

(Locke, 1690, IV.i.9)

Locke, notably in close private correspondence with Newton, makes the

sensible claim that Newton’s propositions in the Principia are not on their own

a stroke of genius but rather of an “admirable chain of intermediate ideas”—
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we may take “admirable” to refer to Newton’s power of meta-intuition, the

intuition he possesses to make intelligent steps of reasoning.

When Locke refers to Newton’s propositions, he is thinking quintessentially

of propositions in the Euclidean sense. This is made all the more evident when

he writes that in demonstrative knowledge, “Demonstration depends on clearly

perceived proofs” (IV.2.3). By virtue of presenting his geometric picture by

using Euclidean proof, Newton satisfies Locke’s condition for demonstrative

knowledge, where truths are perceived “by bare intuition” without further

intermediaries (IV.2.1). We recall that in Feynman’s lecture on the geometry

of the Principia he said, “It is not easy to use the geometrical method to

discover things. It is very difficult, but the elegance of the demonstrations

after the discoveries are made is really very great.”

As Einstein wrote, “the clear conception of the differential law is one of

Newton’s greatest intellectual achievements”. Newton’s clear conceptions did

not spring from nothing. The intuitions that elicited the demonstrations, ap-

plied over an extended period of time, constructing Newton’s clear conception,

are one of Newton’s greatest strengths.
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